UL File No.: E43019 CSA File No.: LR26550

Sealed construction of the NFEB offers high reliability and prevents soldering flux vapors from entering the relay and condensing as an insulating film. So they are simple to clean with any degreaser and detergent cleaner due to the PBT case material, without affecting the maximum contact reliability of the relays.
mm inch

SPECIFICATIONS

Contacts

Arrangement ${ }^{1]}$			2 Form C, 4 Form C	
Initial contact resistance (By voltage drop 6 V DC 1 A)		Max. Typical	$50 \mathrm{~m} \Omega$	
		$25 \mathrm{~m} \Omega$		
Contact material			Movable contact Stationary contact	Gold-clad silver
		Gold-clad silver		
Rating, (resistive load)	Max. switching power		60 W 100 VA	
	Max. switching voltage		220 V AC, DC	
	Max. switching current		2 A	
UL/CSA rating (Suffix A is necessary for CSA)			$\begin{aligned} & \text { 0.5 A } 125 \text { V AC, } 2 \text { A } 30 \text { V DC, } \\ & 0.25 \text { A } 220 \text { V DC } \end{aligned}$	
Expected life (min. operations)	Mechanical		10^{8}	
	Electrical (Resistive)	2 A 30 V DC	2×10^{5}	
		1 A 30 V DC	10^{6}	
		0.5 A 30 V DC	10^{7}	
${ }^{11}$.MBB types available: 2MBB \& 4MBB (See next page for contact positions.)				
Coil				
Minimum operating power, at $25^{\circ} \mathrm{C}$		2C	Approx. 190 mW	
		4C	Approx. 310 mW	
Nominal operating power, at $25^{\circ} \mathrm{C}$		2 C	Approx. 300 mW	
		4C	Approx. 480 mW	
Max. operating power for continuous duty			Approx. 1 W at $40^{\circ} \mathrm{C} 104^{\circ} \mathrm{F}$	

Remarks

${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
*3 Excluding contact bounce time
${ }^{* 4}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 6}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 49)

Characteristics (at $25^{\circ} \mathrm{C}, 50 \%$ R.H. seal level)

Max. operating speed					50 cps
Initial insulation resistance*1					$1,000 \mathrm{M} \Omega$ at 500 V DC
Electrostatic capacitance		Contact/Contact			Approx. 4 pF
		Contact/Coil			Approx. 7 pF
		Contact/Ground			Approx. 6 pF
Initial breakdown voltage*2		Between open contacts			750 Vrms
		Between contact sets			1,000 Vrms
		Between live parts and ground			1,000 Vrms
		Between contacts and coil			1,000 Vrms
Operate time*3 (at nominal voltage)					Max. 15 ms (Approx. 10 ms)
Release time(without diode)*3 (at nominal voltage)					Max. 10 ms (Approx. 3 ms)
Contact bounce					Approx. 1.5 ms
Shock resistance	Functional*4		In de-energized condition		Min. $29.4 \mathrm{~m} / \mathrm{s}^{2}\{3 \mathrm{G}\}$ (In contact direction) Min. $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$ (perpendicular to contact)
			In energized condition		Min. $196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}$
	Destructive*5				Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance	Functiona** ${ }^{*}$		In de-energized condition		$29.4 \mathrm{~m} / \mathrm{s}^{2}\{3 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 0.5 mm (in contact direction) $98 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\} 10$ to 55 Hz at double amplitude of 1.6 mm (perpendicular to contact)
			In energized condition		$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\} 10$ to 55 Hz at double amplitude of 2 mm
	Destructive				$196 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3.3 mm
Conditions for operation, transport and storage*7 (Not freezing and condens ing at low temperature)				Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+149^{\circ} \mathrm{F} \end{aligned}$
				Humidity	5 to 85\%R.H.
Unit weight			2C		Approx. 14 g .49 oz
			4C		Approx. 15.5 g .55 oz

TYPICAL APPLICATIONS

NF relays are widely acceptable in applications where small size and high sensitivity are required.
Such applications include: Electronic equipment, Household applications,

Alarm systems, Office machines, Communication equipment, Measuring equipment, Remote control systems, General control circuits, Machine tools, Industrial machinery, etc.

ORDERING INFORMATION

(Notes) 1. For VDE recognized types, add suffix VDE.
2. For UL/CSA recognized type, add suffix-A, as NF2EB-12V-A whose ground terminal is cut off.
3. Standard packing Carton: 20 pcs.; Case: 200 pcs.

TYPES AND COILDATA at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F} \quad$ *Less than $1,000 \Omega: \pm 10 \%$

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Max. allowable voltage, V DC (at $40^{\circ} \mathrm{C}$)	Coil resistance,* Ω	Nominal operating power, mW	Inductance, H	
							Armature	
							Open	Close
NF2EB-5V	5	4.0	0.5	8.7	90	278	0.071	0.071
NF2EB-6V	6	4.8	0.6	10.5	137	260	0.093	0.094
NF2EB-12V	12	9.6	1.2	21	500	290	0.338	0.344
NF2EB-24V	24	19.2	2.4	42	2,000	290	1.29	1.31
NF2EB-48V	48	38.4	4.8	84	7,000	330	4.12	4.18
NF4EB-5V	5	4.0	0.5	7	53	472	0.029	0.029
NF4EB-6V	6	4.8	0.6	8.5	90	400	0.070	0.071
NF4EB-12V	12	9.6	1.2	17.0	330	440	0.22	0.23
NF4EB-24V	24	19.2	2.4	34	1,200	480	0.77	0.79
NF4EB-48V	48	38.4	4.8	68	4,200	550	2.22	2.25

DIMENSIONS

2 Form C

4 Form C

General tolerance: $\pm 0.5 \pm .020$
(Except for the cover height)
mm inch
PC board pattern (Copper-side view)

PC board pattern (Copper-side view)

REFERENCE DATA

1. Life curve

2. Contact reliability

Test conditions:

1. Contact current/voltage: $10 \mu \mathrm{~A} 100 \mathrm{mV} 1 \mathrm{kHz}$
2. Cycle rate 20 cps .
3. Miscontact detection level: 1 mW (= 100Ω)
4. Detection method: Observation of all changeover contacts

Test result:
$\mathrm{m}=1.5$
$\mu=21.2 \times 10^{6}$
95% confidence level $=3.1 \times 10^{6}$
17 contacts out of 20 achieved 10 million no miscontact operations.
2. Coil temperature rise (resistance method)

5. High temperature test

Test conditions:
Ambient temperature: $80^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Test method:

1. All contacts were switched for 100 operations on 2

A 30 V DC resistive load.
2. Samples then were exposed to $80^{\circ} \mathrm{C}$ temperature for 5,000 hours, continuous.

3. $\mathrm{H}_{2} \mathrm{~S}$ gas test

3. Contact resistance was measured with HewlettPackard testing equipment.
Test result:
Amber relays showed a stable spread of contact resistance within the initially specified $50 \mathrm{~m} \Omega$ after 5,000 hours exposure.

