- Relays
- Reed Relays
- Reed Switches

Factory:

Hasco (Suzhou) Electronics Company Ltd. SuZhou China

Relays · Reed Relays · Reed Switches

Hasco Relays & Electronics Int'l Corp

906 Jericho Tpke, New Hyde Park, NY 11040, U.S.A

Tel (516) 328-9292 · Fax (516) 326-9125

Email: info@hascorelays.com

www.hascorelays.com

HASCO RELAYS AND ELECTRONICS INTERNATIONAL CORP.

Since its founding in 1976, the staff and engineers of HASCO RELAYS AND ELECTRONICS INTERNATIONAL CORP. have dedicated themselves to manufacturing the most reliable, cost effective, and technologically advanced electromechanical relays available.

HASCO RELAYS AND ELECTRONICS INTERNATIONAL CORP. manufactures and ships worldwide from our 100% wholly owned factory and warehouse distribution center located in Suzhou, China; and from our corporate offices and distribution facility in New York, U.S.A. Our products are extensively implemented throughout the automotive, aerospace, fire, safety, security, and telecom industries; in lighting controls, liquid level sensors, HVAC, UPS units and industrial controls.

Doing business with HASCO RELAYS AND ELECTRONICS INTERNATIONAL CORP. offers our customers many advantages:

- We maintain a large on-hand inventory of relays, reed relays, reed switches and magnets; available for immediate direct or drop-shipping worldwide, from either of our two distribution centers.
- We offer person-to-person telephone support including access to our in-house engineers, who are available for design advice and technical support.
- We have over 16 Sales Representative offices located throughout the U.S.A. and worldwide for sales support.
- We offer free samples and literature upon request.
- SERVICE IS OUR MOST IMPORTANT PRODUCT

906 Jericho Turnpike New Hyde Park, NY 11040 516-328-9292 Fax 516-326-9125 email: info@hascorelays.com WWW.HASCORELAYS.COM

Table of Contents

BS/BAS/SC Series	SPDT PC-DIP 1,2 or 5 Amp
CAS/CS Series	DPDT PC-DIP 2.0 Amp
HAS/HS Series	DPDT 2.0 Amp
T Series	Subminiature DPDT 1 Amp11
HBS Series	SPDT 1 Amp
TR Series	SPST-NO 3,5 Amp
KSD Series	DPDT, Miniature 6 Amp17
RPR Series	SPDT 10 Amp
HPR Series	SPDT 10 Amp, Thin Package
KLT Series	SPDT 3,6,12,15,20 Amp
KLT-L Series	Latching 3,6,12,15 Amp25
SSD Series	SPDT 3,6,10 Amp
SLT Series	SPDT, Miniature 10,20 Amp29
MHR Series	SPDT, Low Profile 10,16 Amp
HAT900 Series	SPDT 30,40 Amp
HAT901-L Series	Latching SPDT 30,40 Amp
HAT904 Series	DPDT 30 Amp
	DPDT 30 Amp
HAT905 Series	
HAT905 Series	SPDT 50 Amp
HAT905 Series MKB Series CARB Series	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series CAR80 Series	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series CAR80 Series SPR Series	SPDT 50 Amp
HAT905 Series MKB Series. CARB Series CAR40 Series. CAR80 Series. SPR Series. PR Series.	SPDT 50 Amp
HAT905 Series MKB Series. CARB Series CAR40 Series CAR80 Series SPR Series PR Series UJ Series.	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series CAR80 Series SPR Series PR Series UJ Series UJJ Series UJJ Series	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series CAR80 Series SPR Series PR Series UJ Series UJJ Series DIP/SIP Series.	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series CAR80 Series SPR Series PR Series UJ Series UJJ Series DIP/SIP Series. 700 Series.	SPDT 50 Amp
HAT905 Series MKB Series CARB Series CAR40 Series CAR80 Series SPR Series PR Series UJ Series UJJ Series DIP/SIP Series 700 Series 611 Series	SPDT 50 Amp
HAT905 Series MKB Series. CARB Series CAR40 Series. CAR80 Series. SPR Series. PR Series. UJ Series. UJJ Series. DIP/SIP Series. 700 Series. Reed Switches.	SPDT 50 Amp

File No.:E75887

FEATURES

- FCC Pt 68
- · Small Package
- · Fully sealed
- PC Pin
- Sensitive type and standard type are available

BAS 111 DC12 GF - 1 - XXX

CONTACT RATINGS

Contact Arrangement	1C
Contact Resistance	100mΩ (1A 24VDC)
Contact Material	AgNi, Gold FLash, Silver Alloy
Contact Rating(Resistive)	1A 125VAC/30VDC 1A 240VAC/30VDC 2A 125VAC,3A 120VAC 5A/120VAC
Max. Switching Voltage	120VAC/30VDC
Max. Switching Current	2A DC/AC BAS,BS,SC 5A DC/AC BAS 511
Max. Switching Power	600VA/60W
Mechanical Life	5×10 ⁶ operations
Electrical Life	5×10 ⁵ operations resistive load 24VDC,1A 1×10 ⁵ operations resistive load 120VAC,0.5A

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1000VAC 1min	
Strength	Between open contacts	500VAC 1min	
Operate time	e (at nomi. volt.)	≤10ms	
Release tim	e (at nomi. volt.)	≤5ms	
Humidity		35% ~ 85% RH	
Ambient temperature		-25°C ~ +70°C	
Shock	Functional	98m/s ²	
Resistance Destructive		980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 4g	
Construction		Sealed、Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

COIL DATA

at 23°C

Standard Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.1	0.3	3.3	20
5	3.5	0.5	5.5	56
6	4.2	0.6	6.6	80
9	6.3	0.9	9.9	180
12	8.4	1.2	13.2	320
24	16.8	2.4	26.4	1280
48	33.6	4.8	52.8	5120

Sensitive Type

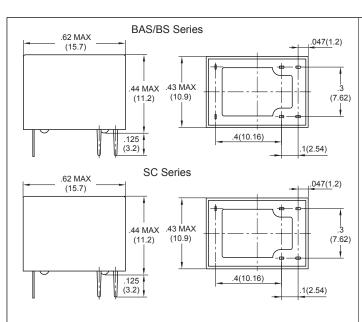
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.1	0.3	4.8	45
5	3.5	0.5	8.0	120
6	4.2	0.6	9.6	180
9	6.3	0.9	14.4	400
12	8.4	1.2	19.2	700
24	16.8	2.4	38.4	2800

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

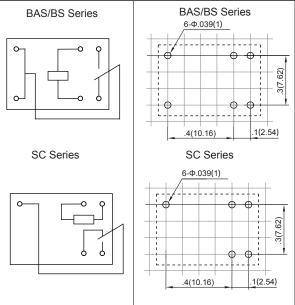
COIL

Coil Power	Standard Type: 450mW
	Sensitive Type: 200mW


SAFETY APPROVAL RATINGS

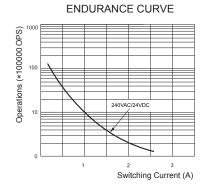
UL&CUL 1A 125VAC/30VDC 1A 240VAC/30VDC 2A 125VAC,3A 120VAC 5A/120VAC

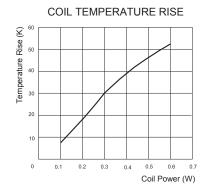
OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

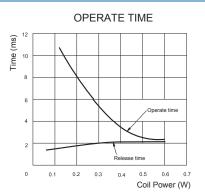

Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)


PCB Layout (Bottom view)




Remark:1) In case of no tolerance shown in outline dimension: outline dimension \leq 1mm,tolerance should be \pm 0.2mm; outline dimension \geq 1mm and \leq 5mm,tolerance should be \pm 0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

File No.:E75887

FEATURES

- Sensitive type and standard type are available
- · Fully sealed

CONTACT RATINGS

Contact Arrangement	2C
Contact Resistance	50mΩ(0.1A 6VDC)
Contact Material	AgNi,Gold FLash,Silver Alloy
Contact Rating(Resistive)	2A/30VDC 2.5A/12VDC 0.5A/125VAC 0.6A/120VAC
Max. Switching Voltage	150VAC/125VDC
Max. Switching Current	2A
Max. Switching Power	75VA/60W
Mechanical Life	2×10 ⁷ operations
Electrical Life	2×10 ^s operations resistive load 20mV 1KHz,1mA

CHARACTERISTICS

Insulation R	esistance	1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1000VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate tim	e (at nomi. volt.)	≤7ms	
Release tim	e (at nomi. volt.)	≤5ms	
Humidity		98% RH, 40°C	
Ambient ten	nperature	-25°C ~ +85°C	
Shock	Functional	196m/s ²	
Resistance Destructive		980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 5g	
Construction		Sealed	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

CAS112/CS212 DC12 - XXX

Model:

CAS112=Standard type
CS212=Sensitive type

Coil Voltage: 3, 5, 6, 9, 12, 18, 24, 48VDC -

Customer code -

COIL DATA

at 20°C

Standard Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.75	0.25	7.8	45
6	4.50	0.30	9.7	70
9	6.75	0.45	12.6	140
12	9.00	0.60	19.4	280
24	18.72	1.20	37.6	1070
48	36.00	2.40	74.2	4300

Sensitive Type

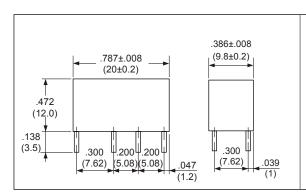
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.75	0.40	15.0	167
6	4.50	0.48	18.0	240
9	6.75	0.72	27.0	540
12	9.00	0.96	35.6	960
18	12.96	1.44	53.4	2160
24	18.72	1.92	70.1	3840
48	36.00	3.84	99.1	7680

This datasheet is for customers' reference. All the specifications are subject to change without notice.

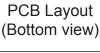
RELAYS

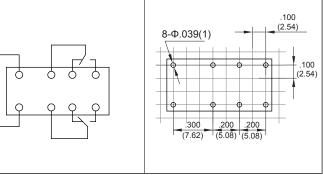
COIL

Coil Power	Standard Type:500mW ~ 580mW	
	Sensitive Type:150mW 48V:300mW	


SAFETY APPROVAL RATINGS

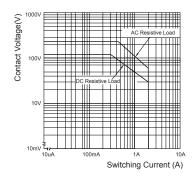
UL&CUL	2A/30VDC 2.5A/12VDC
	0.5A/125VAC
	0.6A/120VAC


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

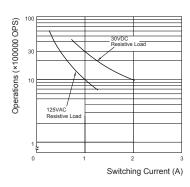

Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

MAXIMUM SWITCHING POWER

ENDURANCE CURVE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

FEATURES

- High sensitive 2 pole relay suitable for signal circuit
- · Adopts twin contacts that are superior in contact reliability
- Completely enclosed type relay with sealed construction being superior in durability to the environment
- BABT Certificate NO.609662

CONTACT RATINGS

Contact Arrangement	2C
Contact Resistance	50mΩ (0.1A 6VDC)
Contact Material	AgNi, Gold FLash, Silver Alloy
Contact Rating(Resistive)	0.5A 125VAC,2A 30VDC
Max. Switching Voltage	250VAC/220VDC
Max. Switching Current	2A
Max. Switching Power	125VA/60W
Mechanical Life	1×10 ⁸ operations
Electrical Life	3×10 ⁵ operations (2A 30VDC) 1×10 ⁶ operations (1A 30VDC)

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate time	e (at nomi. volt.)	≤5ms	
Release time (at nomi. volt.)		≤3.5ms	
Humidity		Max.85% RH	
Ambient temperature		-40°C ~ +85°C	
Shock	Functional	490m/s ²	
Resistance Destructive		980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 4.5g	
Construction		Sealed	

ORDERING INFORMATION

HAS112/HS212 DC12 - XXX

Model: HAS112=Standard type HS212=Sensitive type

Coil Voltage:5, 6, 9, 12, 24, 48VDC-

Customer code -

COIL DATA

at 23°C

Standard Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.5	0.5	7.5	62.5
6	4.2	0.6	9.0	90
9	6.3	0.9	13.5	203
12	8.4	1.2	18.0	360
24	16.8	2.4	36.0	1440
48	33.6	4.8	72.0	5760

Sensitive Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	4.0	0.5	11.5	167
6	4.8	0.6	13.8	240
9	7.2	0.9	20.7	400
12	9.6	1.2	27.6	960
24	19.2	2.4	55.2	3840
48	38.4	4.8	110.4	15360

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

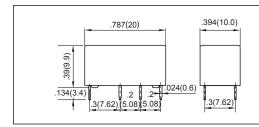
This datasheet is for customers' reference. All the specifications are subject to change without notice.

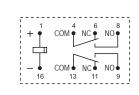
COIL

Coil Power	Standard Type:400mW Sensitive Type:150mw
Temperature rise	≤65K

SAFETY APPROVAL RATINGS

UL&CUL	0.5A 60VDC
	2A 25VDC
	2A 30VDC
	1A 100VAC
	(Industrial control,business equipment)
	1A 120VAC
	2A 125VAC(Telephone equipment)
	3A 30VDC

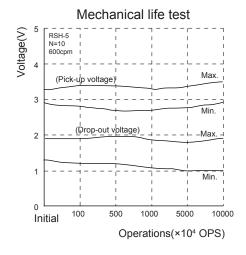

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

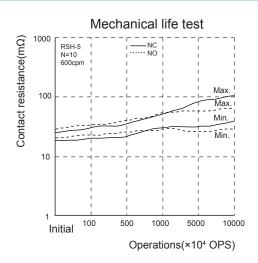

Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)

PCB Layout (Bottom view)

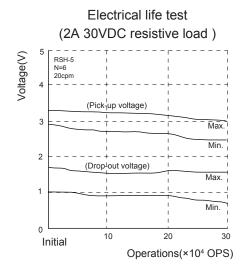


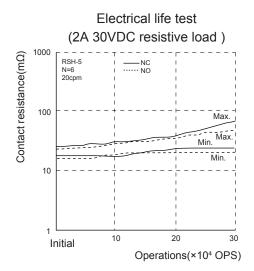


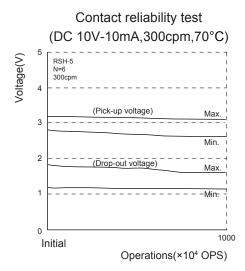
Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

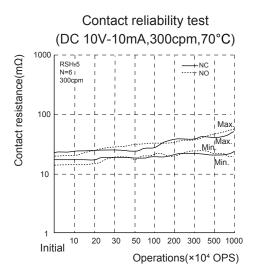
2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES






This datasheet is for customers' reference. All the specifications are subject to change without notice.

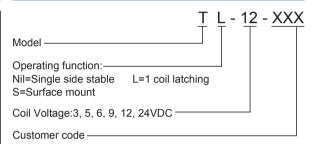


CHARACTERISTIC CURVES

T SERIES **DPDT** 1 Amp

FEATURES

- · Compact size and low profile: 5(H)mm×14(L)mm×9(W)mm
- · Meets FCC part 68 requirements
- · High sensitivity:140mW nominal operating power
- · Dual-in line packaging arrangement fits 1C socket
- Single latching type available
- Fully sealed (immersion cleanable)


CONTACT RATINGS

Contact Arrangement	2C
Contact Resistance	100mΩ (0.1A 6VDC)
Contact Material	AgNi, Gold FLash, Silver Alloy
Contact Rating(Resistive)	0.5A 125VAC,1A 30VDC
Max. Switching Voltage	125VAC/110VDC
Max. Switching Current	1A
Max. Switching Power	62.5VA/30W
Mechanical Life	1×10 ⁸ operations
Electrical Life	2×10 ⁵ operations 1A 30VDC 1×10 ⁵ operations 0.5A 125VAC

CHARACTERISTICS

Insulation Resistance		1000MΩ (500VDC)	
Dielectric Strength	Between coil & contacts Between open contacts Between 2 pole contacts	1000VAC 750VAC 1000VAC	
Surge withstand voltage	Between coil & contacts Between open contacts Between 2 pole contacts	1500VAC 1500VAC 1500VAC	
Operate time (at nomi. volt.)		≤3ms	
Release time (at nomi. volt.)		≤3ms	
Humidity		98% RH, 40°C	
Ambient temperature		-40°C ~ +70°C	
Shock	Functional	490m/s²	
Resistance	Destructive	980m/s ²	
Vibration	Functional	10Hz to 55Hz 3mm DA	
resistance	Destructive	10Hz to 55Hz 5mm DA	
Unit weight		Approx. 1.5g	
Construction		Wash tight sealed	

ORDERING INFORMATION

COIL DATA

at 20°C

Single side stable

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.3	4.5	64.4
5	3.75	0.5	7.5	178
6	4.50	0.6	9.0	257
9	6.75	0.9	13.5	579
12	9.00	1.2	18.0	1028
24	18.00	2.4	36.0	2880

1 coil latching

Nominal Voltage VDC	Action Voltage (Max.) VDC	Reset Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	2.25	4.5	90
5	3.75	3.75	7.5	250
6	4.50	4.50	9.0	360
9	6.75	6.75	13.5	810
12	9.00	9.00	18.0	1440
24	18.00	18.00	36.0	3840

Notes:1) The data shown above are initial values.

²⁾ Please find coil temperature curve in the characteristic curved below.

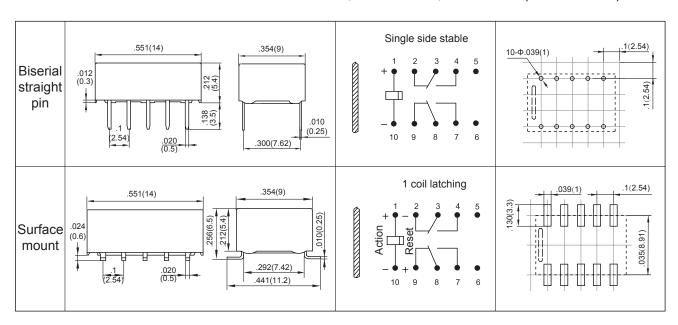
T SERIES DPDT 1 Amp

COIL

Coil Power	Single side stable:140mW(24VDC:200mW)
	1 coil latching:100mW(24VDC:150mW)

SAFETY APPROVAL RATINGS

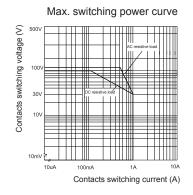
UL&CUL	0.5A/125VAC
	1A/30VDC

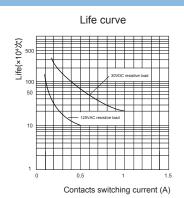

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)


PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

This datasheet is for customers' reference. All the specifications are subject to change without notice.

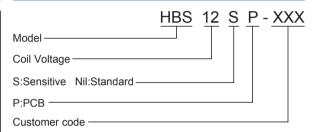
HBS SERIES SPDT 1 Amp

FEATURES

- Small size
- Fully sealed

CONTACT RATINGS

Contact Arrangement	1C
Contact Resistance	100mΩ (0.1A 6VDC)
Contact Material	AgSnO, Silver Alloy
Contact Rating(Resistive)	0.5A/125VAC 30VDC
Max. Switching Voltage	125VAC/60VDC
Max. Switching Current	1A
Max. Switching Power	62.5VA/30W
Mechanical Life	1×10⁵ operations
Electrical Life	1×10 ⁷ operations


CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1000VAC 1min	
Strength	Between open contacts	400VAC 1min	
Operate time	e (at nomi. volt.)	≤5ms	
Release time (at nomi. volt.)		≤5ms	
Humidity		35% ~ 85% RH	
Ambient temperature		-30°C ~ +70°C	
Shock Resistance		98m/s ²	
Vibration resistance		10Hz ~ 55Hz 3.3mm	
Unit weight		Approx. 2.2g	
Construction		Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

COIL DATA

at 20°C

Standard Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
1.5	1.20	0.15	2.25	11.3
3	2.40	0.30	4.5	45
5	4.00	0.50	7.5	125
6	4.80	0.60	9.0	180
9	7.20	0.90	13.5	405
12	9.60	1.20	18.0	720
24	19.20	2.40	36.0	2880

Sensitive Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
1.5	1.20	0.15	2.25	15
3	2.40	0.30	4.5	60
5	4.00	0.50	7.5	167
6	4.80	0.60	9.0	240
9	7.20	0.90	13.5	540
12	9.60	1.20	18.0	960
24	19.20	2.40	36.0	3840

This datasheet is for customers' reference. All the specifications are subject to change without notice.

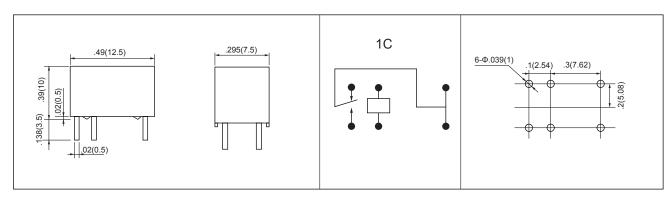
HBS SERIES SPDT 1 Amp

COIL

Coil Power	Standard Type:200mW
	Sensitive Type:150mW

SAFETY APPROVAL RATINGS

UL/CUL	0.1A/30VDC 0.3A/60VDC
	0.5A/125VAC

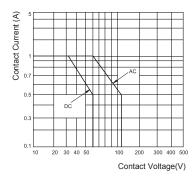

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

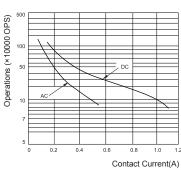
Outline Dimensions

Wiring Diagram (Bottom view)

PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

MAXIMUM SWITCHING POWER

ENDURANCE CURVE

Notice:

(1) To avoid using relay under strong magnetic field which will change the parameters of relays such as pick-up voltage and drop-out voltage.

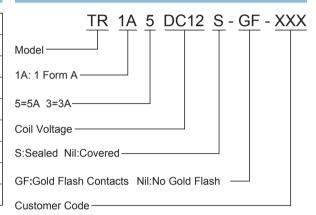
- (2) The relay may be damaged because of falling or when shocking conditions exceed the requirement.
- (3) Regarding the plastic sealed relay, we should leave it cooling naturally untill below 40°C after welding, then clean it and deal with coating, remarkably the temperature of solvents should also be controlled below 40°C. Please avoid cleaning the relay by ultrasonic, avoid using the solvents like gasoline, Freon, and so on, which would affect the configuration of relay or influence the environment.
- (4) About preferable condition of operation, storage and transportation, please refer to "Relays Terminology".

This datasheet is for customers' reference. All the specifications are subject to change without notice.

TR SERIES SPST-NO 3,5 Amp

Application for CUL/TUV

FEATURES


- · 5A switching capability
- The width less than 7.2mm, Suitable for high density mounting
- 10kV impulse withstand voltage between coil and contacts
- · Highly sensitivity: 200mW
- Outline Dimensions: (20.5×7.2×15.3)mm

CONTACT RATINGS

RoHS

Contact Arrangement	1A
Contact Resistance	100mΩ(1A 24VDC)
Contact Material	AgSnO, Gold FLash, Silver Alloy
Contact Rating(Resistive)	3A/5A 250VAC/30VDC
Max. Switching Voltage	277VAC/30VDC
Max. Switching Current	5A
Max. Switching Power	1385VA/150W
Mechanical Life	5×10 ⁶ operations
Electrical Life	1.2×10 ⁵ operations

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	4000VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Surge Voltage	(Between coil & contacts)	10kV(1.2×50μs)	
Operate time (at nomi. volt.)		≤10ms	
Release time (at nomi. volt.)		≤10ms	
Humidity		98% RH, 40°C	
Ambient tem	perature	-40°C ~ +85°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 3g	
Construction		Sealed, Covered	

COIL DATA

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.18	3.90	45
5	3.75	0.25	6.50	125
6	4.50	0.30	7.80	180
9	6.75	0.45	11.70	405
12	9.00	0.60	15.60	720
18	13.50	0.90	23.40	1620
24	18.00	1.20	31.20	2880

at 23°C

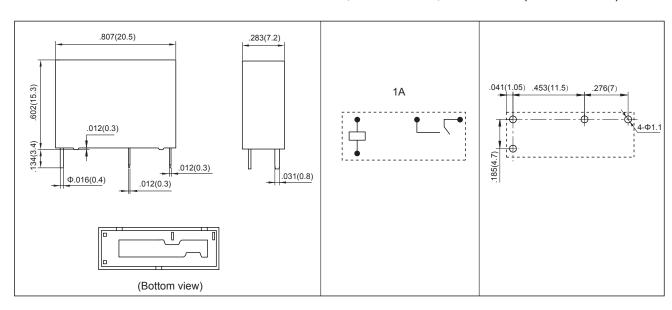
Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

COIL

Coil Power	200mW
------------	-------

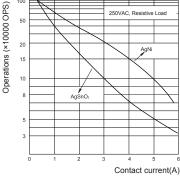

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)

PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension \leq 1mm,tolerance should be \pm 0.2mm; outline dimension >1mm and \leq 5mm,tolerance should be \pm 0.3mm;outline dimension >5mm, tolerance should be \pm 0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

ENDURANCE CURVE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

FEATURES

- · Miniature Two Pole Relay
- · High Reliability
- 6 Amp Switching
- Fully Sealed
- · Low Cost

CONTACT RATINGS

2C
50mΩ (1A 24VDC)
AgSnO, AgNi
5A/30VDC 6A/240VAC
250VAC/125VDC
6A
1440VA/150W
1×10 ⁷ operations
1×10⁵ operations

ORDERING INFORMATION

	KSD	205	DC'	12V	- <u>X</u>	X
Model —						
Coil Voltage:						
Customer code						

CHARACTERISTICS

Insulation Resistance		100MΩ (500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	750VAC 1min	
Operate tim	e (at nomi. volt.)	≤10ms	
Release tim	e (at nomi. volt.)	≤5ms	
Humidity		40 ~ 85% RH	
Ambient temperature		-25°C ~ +60°C	
Shock	Functional	98m/s ²	
Resistance Destructive		980m/s²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 10g	
Construction		Sealed	

COIL DATA

at 20°C

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.1	0.3	4.5	15
5	3.5	0.5	7.5	42
6	4.2	0.6	9.0	60
9	6.3	0.9	13.5	135
12	8.4	1.2	18.0	240
24	16.8	2.4	36.0	960

Notes:1) The data shown above are initial values.

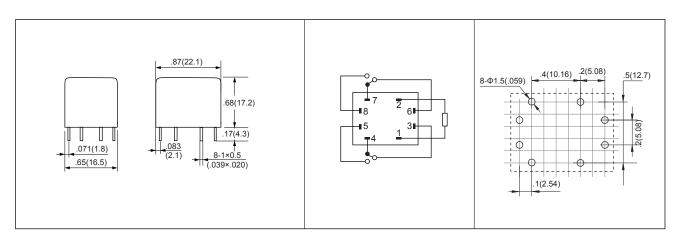
2) Please find coil temperature curve in the characteristic curved below.

COIL

Coil Power	600mW

SAFETY APPROVAL RATINGS

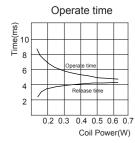
UL&CUL	5A/30VDC
	6A/240VAC

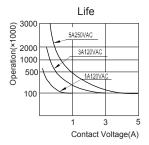

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

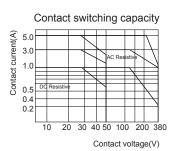
Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)


PCB Layout (Bottom view)


Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RPR SERIES SPDT 10 Amp

File No.:E75887

FEATURES

- · 10A switching capability
- 1 Form A and 1 Form C configurations
- Subminiature, standard PCB layout
- Plastic sealed and flux proofed types available
- Outline Dimensions:(18.4×10.2×15.3)mm

CONTACT RATINGS

Contact Arrangement	1A		1C
Contact Resistance	100mΩ (1A 6VDC)		
Contact Material	AgSnO, Silv	er Alloy	
Contact Rating(Resistive)	Standard type	Sensitive type	Standard type
	5A/250VAC 5A/30VDC 10A/125VAC	3A/250VAC 3A/30VDC	3A/250VAC 3A/30VDC
Max. Switching Voltage	250VAC/30VDC		
Max. Switching Current	10A		
Max. Switching Power	1250VA/150W		
Mechanical Life	1×10 ⁷ operations		
Electrical Life	1×10 ⁵ operations		

CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	2500VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate time	e (at nomi. volt.)	≤8ms	
Release time	e (at nomi. volt.)	≤5ms	
Humidity		35% ~ 95% RH	
Ambient temperature		-40°C ~ +70°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 6g	
Construction		Sealed、Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

RPR F 1A 12 -1 S - XXX
Model
F:Class F Nil:Class B
1A:1 Form A 1C:1 Form C
Coil Voltage —
1:Covered Nil:Sealed —
S:Sensitive type Nil:Standard type
Customer code

COIL DATA

at 20°C

Standard Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.15	3.9	20
5	3.75	0.25	6.5	55
6	4.50	0.30	7.8	80
9	6.75	0.45	11.7	180
12	9.00	0.60	15.6	320
18	13.5	0.90	23.4	720
24	18.0	1.20	31.2	1280

Sensitive Type

	71			
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.15	4.5	45
5	3.75	0.25	7.5	125
6	4.50	0.30	9.0	180
9	6.75	0.45	13.5	400
12	9.00	0.60	18.0	720
18	13.5	0.90	27.0	1600
24	18.0	1.20	36.0	2800

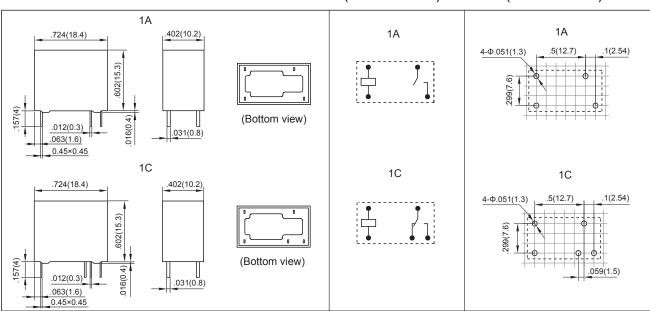
RPR SERIES SPDT 10 Amp

COIL

Coil Power	Standard Type: 450mW
	Sensitive Type: 200mW

SAFETY APPROVAL RATINGS

UL&CUL	5A/250VAC, 5A/30VDC, 10A/125VAC
	3A/250VAC, 3A/30VDC

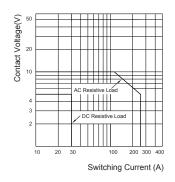

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

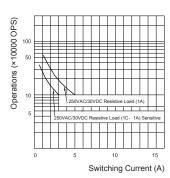
Outline Dimensions

Wiring Diagram (Bottom view)

PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES


MAXIMUM SWITCHING POWER

ENDURANCE CURVE

COIL TEMPERATURE RISE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

HPR SERIES SPDT 10 Amp

FEATURES

- 10A switching capability
- 1 Form A and 1 Form C configurations
- Subminiature, standard PCB layout
- Plastic sealed and flux proofed types available
- Outline Dimensions:(20.5×10.2×15.3)mm

CONTACT RATINGS

Contact Arrangement	1A	1A 1C		
Contact Resistance	100mΩ (1A 24VDC)			
Contact Material	AgSnO, Silver Alloy			
Contact Rating(Resistive)	1A		С	
Contact Rating(Resistive)		NO	NC	
	5A/250VAC	5A/250VAC	3A/250VAC	
	5A/30VDC	5A/30VDC	3A/30VDC	
	10A/125VAC	10A/125VAC		
Max. Switching Voltage	277VAC/30VI	OC		
Max. Switching Current	10A		3A	
Max. Switching Power	1250VA/150W 750VA		750VA/90W	
Mechanical Life	1×10 ⁷ operations			
Electrical Life	1×10⁵ operations			

CHARACTERISTICS

Insulation Resistance		1000MΩ (500VDC)	
Dielectric	Between coil & contacts	4000VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate time	e (at nomi. volt.)	≤8ms	
Release time (at nomi. volt.)		≤5ms	
Humidity		35% ~ 95% RH	
Ambient temperature		-40°C ~ +70°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.6mm DA	
Unit weight		Approx. 7g	
Construction		Sealed, Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

	HPR F 1A 12 -1 S - XXX
Model ———	
F:Class F Nil:Cla	ss B———
1A:1 Form A 1C:	1 Form C
Coil Voltage ——	
1:Covered Nil:Se	aled———————
S:Sensitive type N	Nil:Standard type
Customer code —	

COIL DATA at 20°C

Standard Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.15	3.9	20
5	3.75	0.25	6.5	55
6	4.50	0.30	7.8	80
9	6.75	0.45	11.7	180
12	9.00	0.60	15.6	320
18	13.5	0.90	23.4	720
24	18.0	1.20	31.2	1280

Sensitive Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.15	4.5	45
5	3.75	0.25	7.5	125
6	4.50	0.30	9.0	180
9	6.75	0.45	13.5	400
12	9.00	0.60	18.0	720
18	13.5	0.90	27.0	1600
24	18.0	1.20	36.0	2800

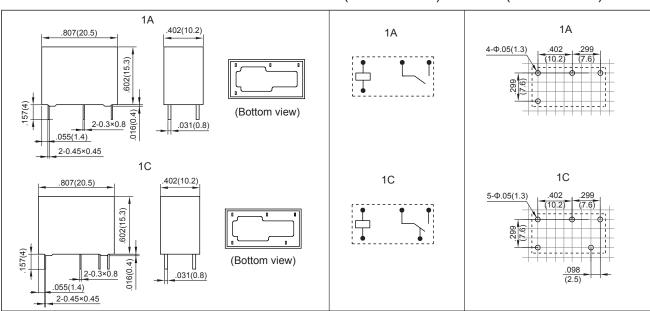
HPR SERIES SPDT 10 Amp

COIL

Coil Power	Standard Type: 450mW
	Sensitive Type: 200mW

SAFETY APPROVAL RATINGS

UL&CUL 5A/250VAC, 5A/30VDC, 10A/125VAC 3A/250VAC, 3A/30VDC

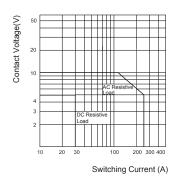

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

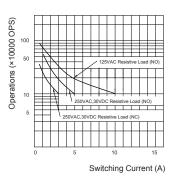
Outline Dimensions

Wiring Diagram (Bottom view)

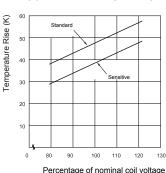
PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES


MAXIMUM SWITCHING POWER

ENDURANCE CURVE

COIL TEMPERATURE RISE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

FEATURES

- Highly reliable, low cost
- Miniature size & large switch capacity up to 20A
- · High dielectric strength type
- Fully Sealed

CONTACT RATINGS

Contact Arrangement	1A、1B、1C
Contact Resistance	50mΩ (1A 24VDC)
Contact Material	AgSnO, AgCdO, Gold FLash
Contact Rating(Resistive)	3A 120VAC/28VDC 6A 120VAC/28VDC 12A 120VAC/28VDC 15A/120VAC 20A/120VAC
Max. Switching Voltage	277VAC/28VDC
Max. Switching Current	20A
Max. Switching Power	5540VA/560W
Mechanical Life	1×10 ⁷ operations
Electrical Life	1×10⁵ operations

CHARACTERISTICS

Insulation Resistance		≥100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	750VAC 1min	
Operate tim	e (at nomi. volt.)	≤8ms	
Release tim	e (at nomi. volt.)	≤5ms	
Humidity		45% ~ 85% RH	
Ambient ten	nperature	Class B:-40°C~85°C; Class F:-40°C~105°C	
Shock	Functional	98m/s ²	
Resistance Destructive		980m/s ²	
Vibration resistance		10Hz to 55Hz 1.5mm DA	
Unit weight		Approx. 12g	
Construction		Sealed, Covered	
Notes:1) The data	a shown above are initial values		

ORDERING INFORMATION

KLT F 1C 12 DC12 - 1 - G	<u>F - XXX</u>
Model —	
F:Class F Nil:Class B	
Contact Arrangement:	
1A=1 Form A	
1B=1 Form B	
1C=1 Form C	
Contact Rating ———	
Coil Voltage	
Nil:Sealed 1:Covered	Customer
GF:Gold Flash—	code

COIL DATA

at 20°C

3A、6A、12A、15A

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.3	3.9	25
5	3.75	0.5	6.5	70
6	4.50	0.6	7.8	100
9	6.75	0.9	11.7	225
12	9.00	1.2	15.6	400
24	18.0	2.4	31.2	1600
48	64.0	4.8	62.4	6400

20A

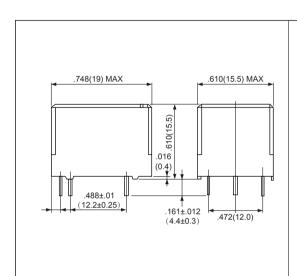
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.3	3.9	20
5	3.75	0.5	6.5	55
6	4.50	0.6	7.8	80
9	6.75	0.9	11.7	180
12	9.00	1.2	15.6	320
24	18.0	2.4	31.2	1280
48	64.0	4.8	62.4	5120

2) Please find coil temperature curve in the characteristic curved below.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

COIL

Coil Power	3A-15A: 360mW
	20A: 450mW


SAFETY APPROVAL RATINGS

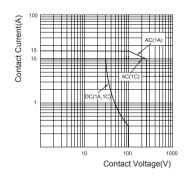
UL&CUL	Resistive	3A 120VAC/28VDC, 6A 120VAC/28VDC 12A 120VAC/28VDC, 15A/120VAC 20A/120VAC
OLACOL	N.O. Only, Single Pole	10A 12VDC Tungsten, 1500W 277VAC Ballast 15A(1700W) 120VAC Tungsten, 1/2hp 120VAC
TüV		6A 250VAC/28VDC

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

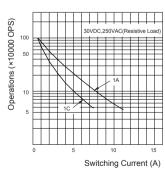

Unit: inch(mm)

Outline Dimensions

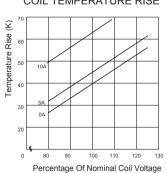
Wiring Diagram (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES


MAXIMUM SWITCHING POWER

ENDURANCE CURVE

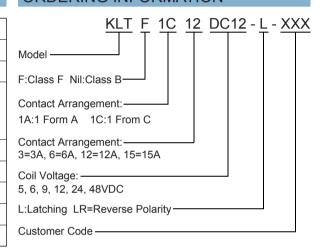
COIL TEMPERATURE RISE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

File No.:E75887

Patent No.:201120133518.4


FEATURES

- · Highly reliable, low cost
- · Miniature size & large switch capacity up to 15A
- · High dielectric strength type
- · Fully Sealed
- · Green Energy Saving

CONTACT RATINGS

Contact Arrangement	1A、1C
Contact Resistance	50mΩ(1A 24VDC)
Contact Material	AgSnO, Silver Alloy
Contact Rating(Resistive)	3A 120VAC/28VDC 6A 120VAC/28VDC 12A 120VAC/28VDC 15A/120VAC
Max. Switching Voltage	277VAC/28VDC
Max. Switching Current	15A
Max. Switching Power	2770VA/300W
Mechanical Life	1×10 ⁷ times
Electrical Life	1×10 ⁵ times

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	750VAC 1min	
Reacting tim	ne (at nomi. volt.)	8ms max.	
Resetting time (at nomi. volt.)		5ms max.	
Humidity		45% ~ 85% RH	
Ambient temperature		-40°C ~ +85°C	
Shock	Functional	98m/s ²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz to 55Hz 1.5mm DA	
Unit weight		Approx. 12g	
Construction		Sealed	

COIL DATA

at 20°C

Nominal Voltage VDC	Action/Reset Voltage VDC	Impulse Width ms	Coil Resistance Ω±10%
5	4.0	100	31
6	4.8	100	45
9	7.2	100	100
12	9.6	100	180
24	19.2	100	720
48	38.4	100	2880

COIL

Coil Power	800mW

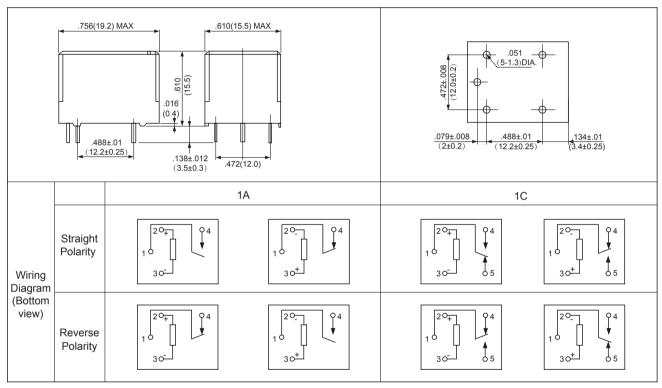
Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

SAFETY APPROVAL RATINGS


UL&CUL	Resistive	3A 120VAC/28VDC, 6A 120VAC/28VDC 12A 120VAC/28VDC 15A/120VAC
	N.O. Only, Single Pole	10A 12VDC Tungsten, 1500W 277VAC Ballast 15A(1700W) 120VAC Tungsten,

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions

PCB Layout (Bottom view)

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

Notice

- 1.Relay is on the "reset" or "set" status when being released form stock, with the consideration of shock risen from transit and relay mounting, relay would be changed to "set" or "reset" status, therefore, when application (connecting the power supply), please reset the relay to "set" or "reset" status on request.
- 2.In order to maintain "set" or "reset" status, energized voltage to coil should reach the rated voltage, impulse width should be 5 times more than "set" or "reset" time. Do not energize voltage to "set" coil and "reset" coil simultaneously. Long energized time (more than 1 min) should be avoided.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

SSD SERIES SPDT 3,6,10 Amp

File No.:E75887

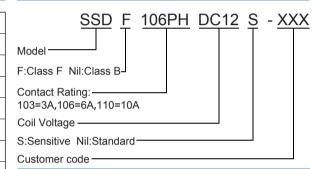
File No.:R 50215414

FEATURES

- · Highly reliable, low cost
- Miniature size & large switch capacity up to 10A
- · High dielectric strength type
- Printed circuit terminals fits grid with 2.54mm
- · CUL recognized
- · Fully Sealed

CONTACT RATINGS

Contact Arrangement	1A,1B,1C
Contact Resistance	50mΩ (1A 24VDC)
Contact Material	AgSnO, AgCdO
Contact Rating(Resistive)	10A/120VAC 6A/28VDC
Max. Switching Voltage	250VAC/125VDC
Max. Switching Current	10A
Max. Switching Power	2500VA/330W
Mechanical Life	2×10 ⁷ operations
Electrical Life	1×10⁵ operations


CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	3000VAC 1min	
Strength	Between open contacts	750VAC 1min	
Operate time	e (at nomi. volt.)	≤7ms	
Release time (at nomi. volt.)		≤4ms	
Humidity		45% ~ 85% RH	
Ambient temperature		Class B:-45°C~85°C Class F:-45°C~105°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 10g	
Construction		Sealed	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

COIL DATA Standard Type

at 20°C

Nominal Voltage VDC	Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
3	2.25	0.3	3.9	20
5	3.75	0.5	6.5	56
6	4.50	0.6	7.8	80
9	6.75	0.9	11.7	180
12	16.0	1.2	15.6	320
24	18.0	2.4	31.2	1150
48	36.0	4.8	62.4	4608

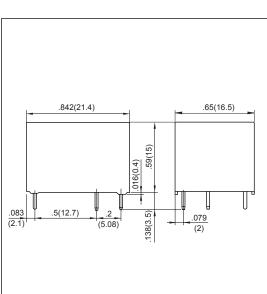
Sensitive Type

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.75	0.5	6.5	80
6	4.50	0.6	7.8	110
9	6.75	0.9	11.7	250
12	16.0	1.2	15.6	440
24	18.0	2.4	31.2	1780

SSD SERIES SPDT 3,6,10 Amp

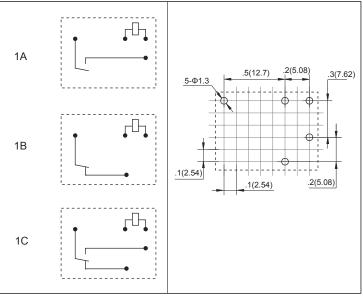
COIL

Coil Power	Standard:450mW (24V、48V:500mW)
	Sensitive:310mW~330mW


SAFETY APPROVAL RATINGS

UL&CUL	6A 120VAC/28VDC 10A 120VAC
TüV	10A/250VAC 10A/28VDC

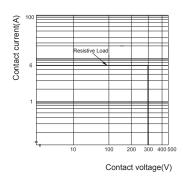
OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.


Unit: inch(mm)

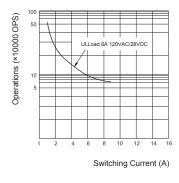
Outline Dimensions

Wiring Diagram (Bottom view)

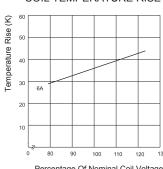
PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

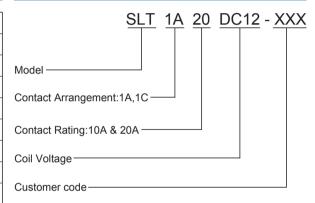
CHARACTERISTIC CURVES



ENDURANCE CURVE

COIL TEMPERATURE RISE

Percentage Of Nominal Coil Voltage


SLT SERIES SPDT 10,20 Amp

CONTACT RATINGS

Contact Arrangement	1A,1C
Contact Resistance	100mΩ (1A 6VDC)
Contact Material	AgSnO
Contact Rating(Resistive)	20A/14VAC 10A/120VAC
Max. Switching Voltage	380VAC/42VDC
Max. Switching Current	20A
Max. Switching Power	1200VA/280W
Mechanical Life	1×10 ⁷ operations
Electrical Life	1×10⁵ operations

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	500VAC 1min	
Strength	Between open contacts	500VAC 1min	
Operate time	e (at nomi. volt.)	≤10ms	
Release time	e (at nomi. volt.)	≤5ms	
Humidity		85% RH(20°C)	
Ambient temperature		-40°C ~ +85°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 6g	
Construction		Sealed	

COIL DATA at 20°C

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
6	4.8	0.30	6.6	60
9	7.2	0.45	9.9	135
12	9.6	0.60	13.2	240
24	19.2	1.20	26.4	960

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

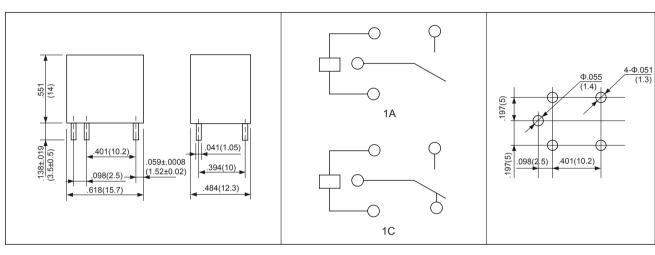
SLT SERIES SPDT 10,20 Amp

COIL

Coil Power 600	mW
----------------	----

SAFETY APPROVAL RATINGS

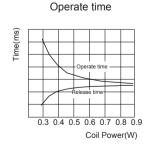
UL&CUL	20A/14VDC 10A/120VAC	
	10A/14VDC	
	1/2HP 125VAC	

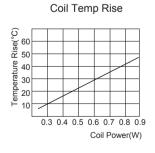

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

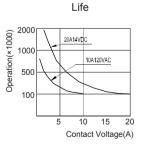
Unit: inch(mm)

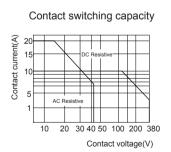
Outline Dimensions

Wiring Diagram (Bottom view)


PCB Layout (Bottom view)




Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES

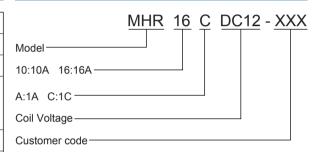
This datasheet is for customers' reference. All the specifications are subject to change without notice.

* SINCE 1976 *

MHR SERIES SPDT 10,16 Amp

FEATURES

- Subminiature Light Weight Relay
- Switching Capacity Up to 16A
- · High Sensitivity
- P.C.Board Mounting, Direct Pitch Terminal


CONTACT RATINGS

Contact Arrangement	1A,1C	
Contact Resistance	50mΩ (1A 24VDC)	
Contact Material	AgSnO, AgNi	
Contact Rating(Resistive)	1A 1C 10A/125,250VAC 10A/30VDC 5A/250VAC,3VDC 1/10HP 125,277VAC 1/10HP 125,277VAC	
Max. Switching Voltage	250VAC/125VDC	
Max. Switching Current	16A	
Max. Switching Power	4000VA/480W	
Mechanical Life	1×10 ⁷ operations	
Electrical Life	1×10⁵ operations	

CHARACTERISTICS

Insulation Resistance		500MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate time	e (at nomi. volt.)	≤10ms	
Release time	e (at nomi. volt.)	≤4ms	
Humidity		85% (20°C)	
Ambient temperature		-40°C ~ +85°C	
Shock Functional		98m/s ²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 9g	
Construction		Sealed	

ORDERING INFORMATION

COIL DATA

at 20°C

1A

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	4.0	0.25	6.5	125
6	4.8	0.30	7.8	180
9	7.2	0.45	11.7	405
12	9.6	0.60	15.6	720
24	19.2	1.20	31.2	2880

1C

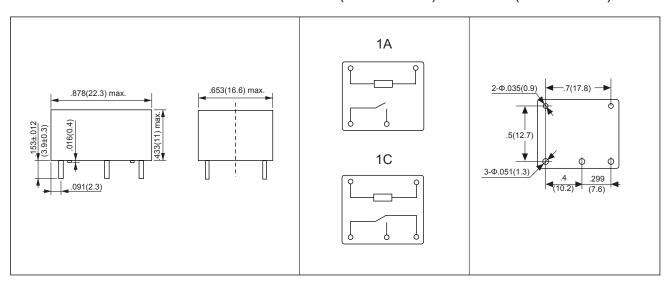
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	4.0	0.25	6.5	55.5
6	4.8	0.30	7.8	80
9	7.2	0.45	11.7	180
12	9.6	0.60	15.6	320
24	19.2	1.20	31.2	1280

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

COIL

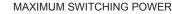
Coil Power	1A:200mW
	1C:450mW

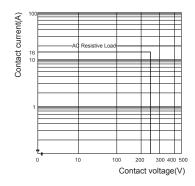

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

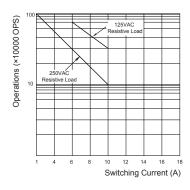
Outline Dimensions

Wiring Diagram (Bottom view)

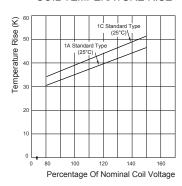

PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES



ENDURANCE CURVE

COIL TEMPERATURE RISE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

File No.:E75887

FEATURES

- 4000VAC high dielectric strength between contacts and coil is available
- · Max. switch capacity up to 40A

CONTACT RATINGS

Contact Arrangement	1A、1B、1C
Contact Resistance	50mΩ(1A 24VDC)
Contact Material	AgCdO, AgSnO, Silver Alloy
Contact Rating(Resistive)	30/40A 277VAC 30A/28VDC
Max. Switching Voltage	277VAC/28VDC
Max. Switching Current	40A
Max. Switching Power	11080VA/560W
Mechanical Life	1×10 ⁷ operations
Electrical Life	1×10⁵ operations

ORDERING INFORMATION

HAT F 901 C S 30 DC 12-1-XXX Model-F:Class F. Customer Nil:Class B code 901:PCB Pins Only without 902:PCB Pins & **Quick Connects** -Coil Voltage 903: Quick Connects only-Flange Mount Coil:AC or DC A:SPST-NO B:SPST-NC C:SPDT Nil:Open C:Covered Nil:40A 30:30A S:Sealed

Note: 902&903 relays do not have pin 6.

CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric Between coil & contacts		2000VAC 1min	
Strength	Between open contacts	1500VAC 1min	
Operate time	e (at nomi. volt.)	≤15ms	
Release time (at nomi. volt.)		≤10ms	
Humidity		98% RH, 40°C	
Ambient temperature		Class B:-20°C~85°C Class F:-20°C~105°C	
Shock Functional		98m/s ²	
Resistance Destructive		980m/s ²	
Vibration resistance		10Hz to 55Hz 1.5mm DA	
Unit weight		Approx. 36g	
Construction		Sealed, Covered, open type	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

COIL DATA

at 25°C

DC

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.75	0.50	6.50	27
6	4.50	0.60	7.80	40
9	6.75	0.90	11.70	97
12	9.00	1.20	15.60	155
15	11.25	1.50	19.50	256
18	13.50	1.80	23.40	380
22	16.50	2.20	28.60	640
24	18.00	2.40	31.20	660
48	36.00	4.80	62.40	2560
110	82.50	11.00	143.00	13400

AC

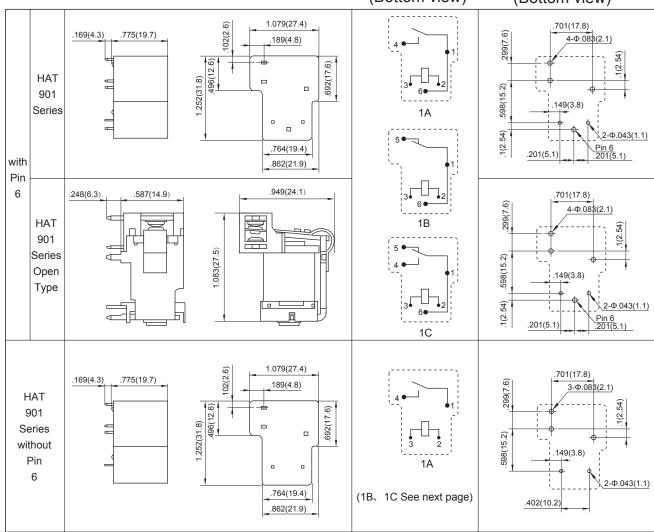
Nominal Voltage VAC	Pick-up Voltage (Max.) VAC	Drop-out Voltage (Min.) VAC	Max. Allowable Voltage VAC	Coil Resistance Ω±10%
12	9.6	1.2	15.60	27
24	19.2	2.4	7.80	120
110	88.0	11.0	11.70	2360
120	96.0	12.0	15.60	3040
220	176.0	22.0	19.50	13490
240	192.0	24.0	23.40	15735
277	221.6	27.7	28.60	20300

COIL

oil Power	DC:900mW	AC:2VA	

SAFETY APPROVAL RATINGS

UL&CUL	NO	1HP/120VAC, 2HP/277VAC, 2HP/240VAC 20A/277VAC Ballast, 30A/120VAC Ballast
	NC	2HP/277VAC, 1HP/120VAC 10A/277VAC Ballast,2A/120VAC Tungsten
TüV		20A/240VAC/14VDC 15A/240VAC/14VDC

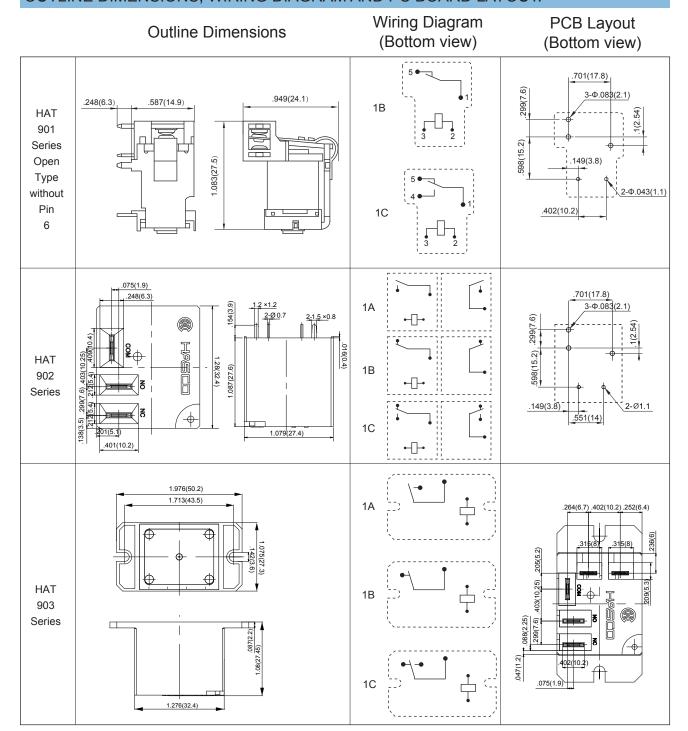

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)

PCB Layout (Bottom view)



This datasheet is for customers' reference. All the specifications are subject to change without notice.

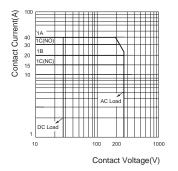
OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

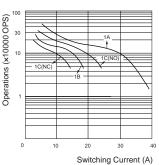
Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

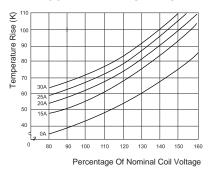
This datasheet is for customers' reference. All the specifications are subject to change without notice.


RELAYS

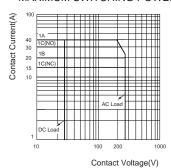
email:info@hascorelays.com


CHARACTERISTIC CURVES

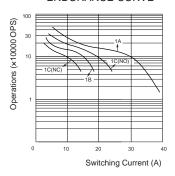
HAT901 SERIES


MAXIMUM SWITCHING POWER

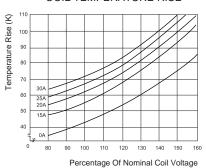
ENDURANCE CURVE



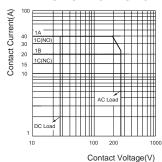
COIL TEMPERATURE RISE



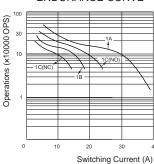
HAT902 SERIES


MAXIMUM SWITCHING POWER

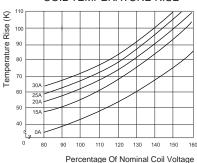
ENDURANCE CURVE



COIL TEMPERATURE RISE



HAT903 SERIES


MAXIMUM SWITCHING POWER

ENDURANCE CURVE

COIL TEMPERATURE RISE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

at 25°C

Coil

Resistance

Ω±10%

21

30

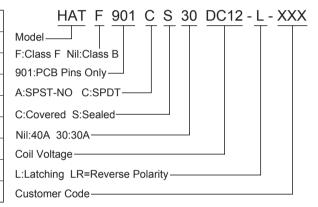
67.5

120

480

1920

Patent No.:201120133518.4


FEATURES

- · Large switch capacity up to 40A
- · Green Energy Saving

CONTACT RATINGS

Contact Arrangement	1A、1C
Contact Resistance	50mΩ(1A 24VDC)
Contact Material	AgSnO, Silver Alloy
Contact Rating(Resistive)	30/40A 277VAC 30A/28VDC
Max. Switching Voltage	277VAC/28VDC
Max. Switching Current	40A
Max. Switching Power	7200VA/560W
Mechanical Life	1×10 ⁷ times
Electrical Life	1×10⁵ times

ORDERING INFORMATION

Impulse

Width

ms

100

100

100

100

100

100

Note: This relay do not have pin 6.

Action/Reset

Voltage

VDČ

4.0

4.8

7.2

9.6

19.2

38.4

COIL DATA

Nominal

Voltage

VDC

5

6

9

12

24

48

CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	2000VAC 1min	
Strength	Between open contacts	1500VAC 1min	
Reacting time (at nomi. volt.)		15ms max.	
Resetting time (at nomi. volt.)		10ms max.	
Humidity		98% RH,40°C	
Ambient temperature		-20°C ~ +85°C	
Shock Functional		98m/s ²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz to 55Hz 1.5mm DA	
Unit weight		Approx. 26g	
Construction		Sealed, Covered	

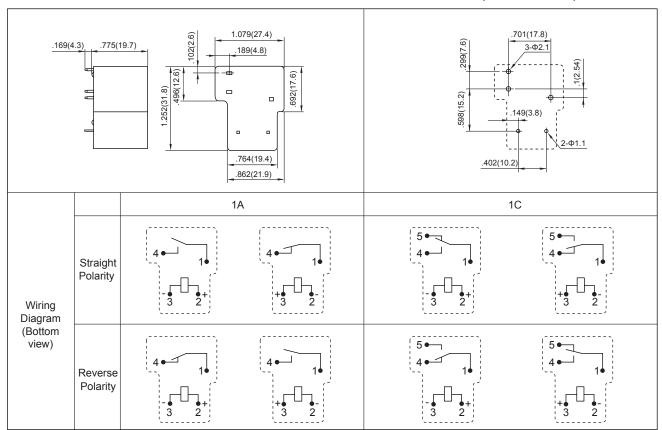
COIL

Coil Power	1200mW

Notes: The data shown above are initial values.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

SAFETY APPROVAL RATINGS


UL&CUL	NO	1HP/120VAC, 2HP/277VAC, 2HP/240VAC 20A/277VAC Ballast, 30A/120VAC Ballast
	NC	2HP/277VAC, 1HP/120VAC 10A/277VAC Ballast, 2A/120VAC Tungsten

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions

PCB Layout (Bottom view)

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

Notice

- 1.Relay is on the "reset" or "set" status when being released form stock, with the consideration of shock risen from transit and relay mounting, relay would be changed to "set" or "reset" status, therefore, when application (connecting the power supply), please reset the relay to "set" or "reset" status on request.
- 2.In order to maintain "set" or "reset" status, energized voltage to coil should reach the rated voltage, impulse width should be 5 times more than "set" or "reset" time. Do not energize voltage to "set" coil and "reset" coil simultaneously. Long energized time (more than 1 min) should be avoided.

File No.:E75887

FEATURES

- · 30A switching capabilities
- DPST-NO and DPDT configuration
- · Meets VDE 8mm spacing, 4KV dielectric
- · Meets UL Class F construction
- Dust cover or sealed version:PCB or QC Terminal
- Outline Dimensions:(52.32×34.5×30.48)mm

CONTACT RATINGS

Contact Arrangement	2A、2C
Contact Resistance	50mΩ(1A 24VDC)
Contact Material	AgSnO,AgCdO,Silver Alloy
Contact Rating(Resistive)	NO:30A 250VAC、30A 277VAC/28VDC NC:3A 250VAC、3A 277VAC
Max. Switching Voltage	277VAC/28VDC
Max. Switching Current	30A
Max. Switching Power	8310VA/840W
Mechanical Life	5×10 ⁶ operations
Electrical Life	1×10⁵ operations

CHARACTERISTICS

Insulation Resistance		1000MΩ (500VDC)	
Dielectric	Between coil & contacts	4000VAC 1min	
Strength	Between open contacts	1500VAC 1min	
	Between contacts poles	2000VAC 1min	
Operate time (at nomi. volt.)		≤25ms	
Release time (at nomi. volt.)		≤25ms	
Humidity		35% ~ 85% RH	
Ambient tem	perature	AC:-40°C~65°C DC:-40°C~85°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.65mm DA	
Unit weight		Approx. 86g	
Construction		Sealed Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

Model
Form: 2A=2 Form A
2C=2 Form C
Coil: DC or AC
Coil Voltage
Nil:PC Pin
Q:Quick Connect W/Flange Mounting
Nil:Sealed C:Covered
Customer code

COIL DATA

at 23°C

DC

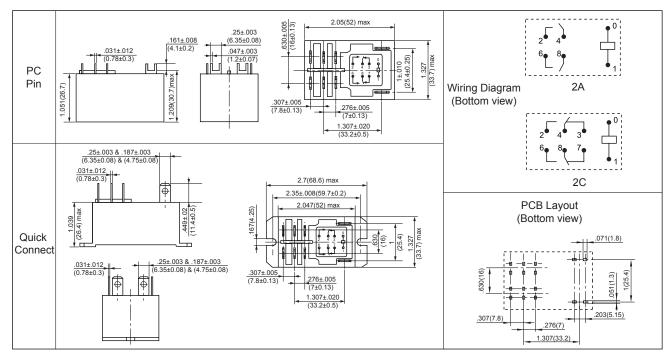
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
6	4.5	0.6	9.6	22
12	9.0	1.2	19.2	86
24	18.0	2.4	38.4	350
48	36.0	4.8	76.8	1390
110	82.5	11.0	176.0	7255

AC

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Coil Res Ω±1	sistance 0% 50 Hz
	VDC	VDC	00 HZ	30 112
24	19.2	7.2	39	52
120	96.0	36.0	950	1390
208	166.4	62.4	2841	3900
240	192.0	72.0	3800	5200
277	221.6	83.1	5200	7255

COIL

Coil Power	DC:Approx. 1700mW
	AC:Approx. 4.0VA

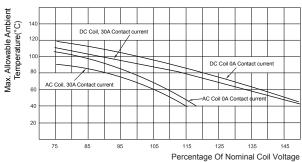

SAFETY APPROVAL RATINGS

UL&CUL	30A 120VAC/277VAC/28VDC
	1HP 120VAC, 2.5HP 240VAC
	TV-10
	14 FLA/84 LRA 277VAC

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

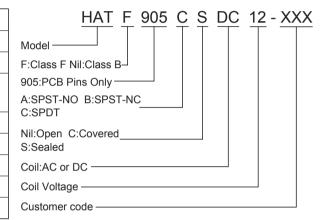
CHARACTERISTIC CURVES

MAX. ALLOWABLE AMBIENT TEMPERATURE

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

File No.:E75887


FEATURES

- 4000VAC high dielectric strength between contacts and coil is available
- · Max. switch capacity up to 50A

CONTACT RATINGS

Contact Arrangement	1A、1B、1C
Contact Resistance	50mΩ(1A 24VDC)
Contact Material	AgCdO, AgSnO, Silver Alloy
Contact Rating(Resistive)	50A/277VAC 30A/28VDC
Max. Switching Voltage	277VAC/28VDC
Max. Switching Current	50A
Max. Switching Power	13850VA/840W
Mechanical Life	1×10 ⁷ operations
Electrical Life	5×10⁴ operations

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)
Dielectric	Between coil & contacts	2000VAC 1min
Strength	Between open contacts	1500VAC 1min
Operate time	e (at nomi. volt.)	≤15ms
Release time (at nomi. volt.)		≤10ms
Humidity		98% RH,40°C
Ambient temperature		Class B:-20°C~85°C Class F:-20°C~105°C
Shock Functional		98m/s²
Resistance	Destructive	980m/s ²
Vibration resistance		10Hz ~ 55Hz 1.5mm DA
Unit weight		Approx. 36g
Construction		Sealed, Covered, Open type

Notes: The data shown above are initial values.

COIL DATA

at 25°C

DC

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.75	0.50	6.50	21
6	4.50	0.60	7.80	30
9	6.75	0.90	11.70	67.5
12	9.00	1.20	15.60	120
15	11.25	1.50	19.50	187.5
18	13.50	1.80	23.40	270
22	16.50	2.20	28.60	400
24	18.00	2.40	31.20	480
48	36.00	4.80	62.40	1920
110	82.50	11.00	143.00	10080

AC

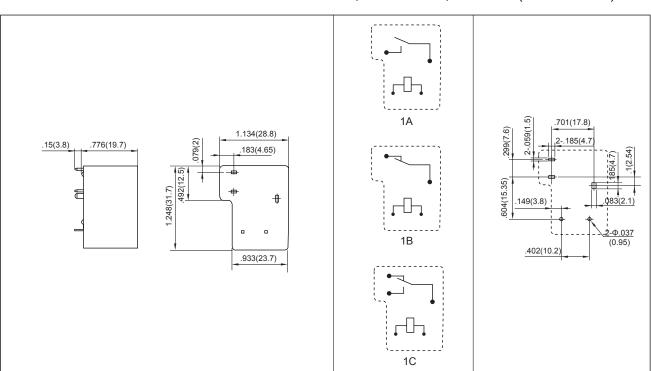
Nominal Voltage VAC	Pick-up Voltage (Max.) VAC	Drop-out Voltage (Min.) VAC	Max. Allowable Voltage VAC	Coil Resistance Ω±10%
12	3.75	0.50	15.60	27
24	4.50	0.60	7.80	120
110	6.75	0.90	11.70	2360
120	9.00	1.20	15.60	2560
220	11.25	1.50	19.50	9680
240	13.50	1.80	23.40	11520
277	16.50	2.20	28.60	15300

COIL

Coil Power	DC:1200mW
	AC:2.0VA

SAFETY APPROVAL RATINGS

UL&CUL	50A/277VAC 30A/28VDC


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

Outline Dimensions

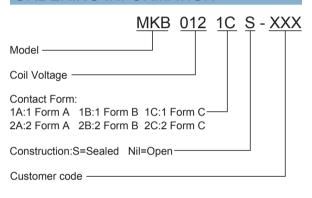
Wiring Diagram (Bottom view)

PCB Layout (Bottom view)

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

This datasheet is for customers' reference. All the specifications are subject to change without notice.


FEATURES

- Switching capacity up to 20A
- · Six different contact arrangements
- PCB mounting
- · Open and sealed type is available

CONTACT RATINGS

Contact Arrangement	1A、1B、1C、2A、2B、2C
Contact Resistance	100mΩ(1A 5VDC)
Contact Material	AgSnO, Silver Alloy
Min. Load	0.5A,12VDC
Max. Switching Voltage	75VDC/60VAC
Max. Switching Current	20A
Max. Switching Power	500VA/200W
Mechanical Life	1×10 ⁷ operations
Electrical Life	2×10⁵ operations

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric Strength		500VAC	
Operate time (at nomi. volt.)		≤10ms	
Release time (at nomi. volt.)		≤10ms	
Ambient temperature		-40°C ~ +85°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Open:8g Sealed:12g	
Construction		Sealed、Open	
•			

COIL DATA

at 20°C

Nominal Voltage	Volt	Pick-up Voltage VDC		o-out age OC	Max. Allowable Voltage	
VDC	1A,1B,1C 2A,2B	2C	1B,2B	1A,1C 2A,2C	Voltage	Ω±10%
006	3.75	4.5	0.35	0.7	8	28
012	7.50	9.0	0.70	1.4	16	130
024	15.00	18.0	1.40	2.8	31	520

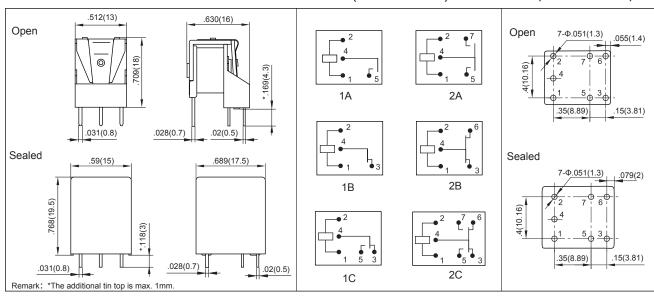
COIL

Coil Power	1100mW (6VDC:1300mW)

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

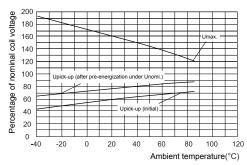
This datasheet is for customers' reference. All the specifications are subject to change without notice.


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

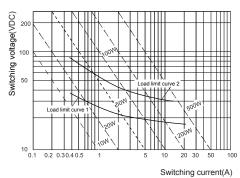
Wiring Diagram (Bottom view)

PCB Layout (Bottom view)



Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.


CHARACTERISTIC CURVES

1. Coil operating voltage range

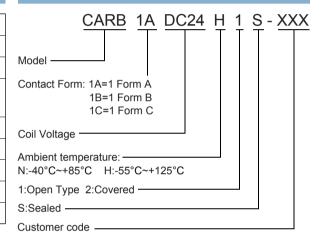
- (1) There should be no contact load applied when maximum continuous operation voltage is applied on coil.
- (2) The operating voltage is connected with coil pre-energized time and voltage. After pre-energized, the operating voltage will increase
- (3) The maximum allowable coil temperature is 180°C. For the coil temperature rise which is measured by resistance is average value, we recommend the coil temperature should be below 155°C under the different application ambient, different coil voltage and different load etc.
- (4) If the actual operating coil voltage is out of the specified range, please contact HASCO for further details.

Load limit curve

- (1) The load and electrical endurance tests are made according to "CONTACT DATA" parameters' table. If actual load voltage, current, or operate frequency is different from "CONTACT DATA" table, please arrange corresponding tests for confirmation.
- (2) Load limit curve 1: arc extinguishes, during transit time (change over contact).
- (3) Load limit curve2: safe shutdown, no stationary arc (make contact).

This datasheet is for customers' reference. All the specifications are subject to change without notice.

* SINCE 1976 *



CONTACT RATINGS

Contact Arrangement	1A、1B、1C
Contact Resistance	50mΩ (1A 24VDC)
Contact Material	AgSnO, AgNi, Silver Alloy
Contact Rating(Resistive)	NO:30A 240VAC、20A 28VDC NC:15A 240VAC、15A 28VDC
Max. Switching Voltage	380VAC/75VDC
Max. Switching Current	30A
Max. Switching Power	7200VA/560W
Mechanical Life	1×10 ⁷ operations
Electrical Life	1×10⁵ operations

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate time (at nomi. volt.)		≤15ms	
Release time (at nomi. volt.)		≤10ms	
Ambient temperature		N:-40°C~+85°C H:-55°C~+125°C	
Shock Functional		98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 40Hz 1.27mm DA	
Unit weight		Open:Approx.16g Sealed:Approx.20g	
Construction		Sealed, Covered, open type	

COIL DATA at 23°C

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
12	9.6	1.2	14.4	90
24	19.2	2.4	28.8	380
48	38.4	4.8	57.6	2300

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

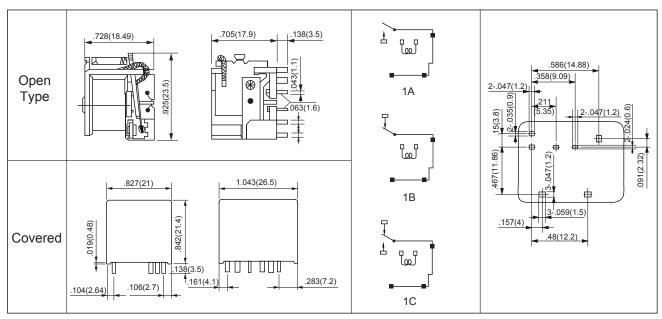
This datasheet is for customers' reference. All the specifications are subject to change without notice.

COIL

Coil Power	12V:1600mW 24V:1500mW
	48V:1000mW

SAFETY APPROVAL RATINGS

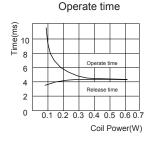
UL&CUL	30A/240VAC 20A/28VDC

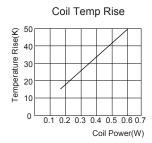

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

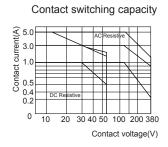
Unit: inch(mm)

Outline Dimensions

Wiring Diagram (Bottom view)


PCB Layout (Bottom view)



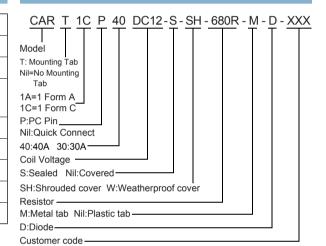

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ± 0.1 mm.

CHARACTERISTIC CURVES

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS


FEATURES

- · High contact rating 40A
- · High temperature design
- 1 Form A and 1 Form C arrangements
- · Quick connect and P.C.Board terminals
- Mounting Tab option

CONTACT RATINGS

Contact Arrangement	1A、1C
Contact Resistance	50mΩ (1A 24VDC)
Contact Material	AgSnO, AgNi, Silver Alloy
Contact Rating(Resistive)	NO:40A 14VDC NC:30A 14VDC
Max. Switching Voltage	75VDC
Max. Switching Current	40A
Max. Switching Power	560W
Mechanical Life	1×10 ⁶ operations
Electrical Life	1×10⁵ operations

ORDERING INFORMATION

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	500VAC 1min	
Strength	Between open contacts	500VAC 1min	
Operate time	e (at nomi. volt.)	≤10ms	
Release time (at nomi. volt.)		≤10ms	
Ambient temperature		-40°C ~ +85°C	
Shock Resistance		147m/s ²	
Vibration resistance		10Hz ~ 40Hz 1.27mm DA	
Unit weight		Approx. 30g	
Construction		Sealed, Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

COIL DATA

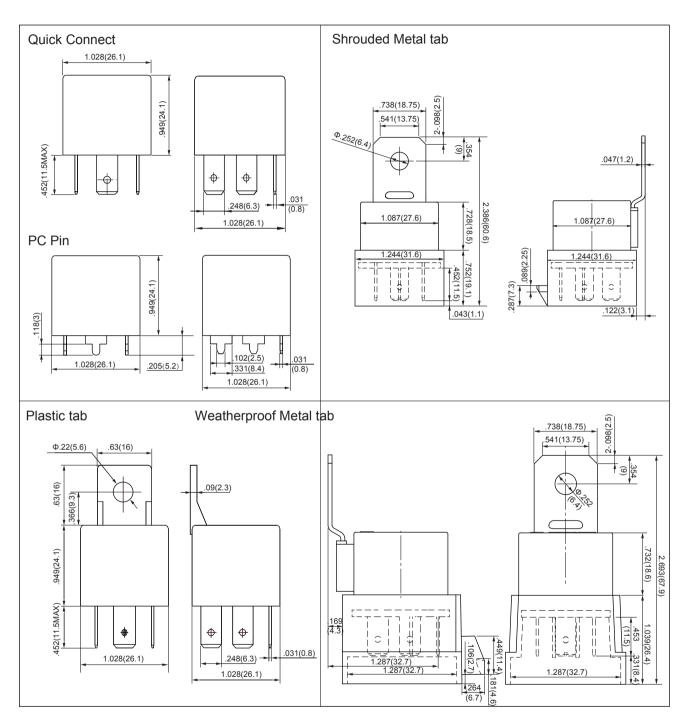
at 20°C

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
6	4.2	0.6	7.8	20
12	8.4	1.2	15.6	80
24	16.8	2.4	31.2	320

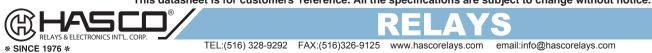
COIL

Coil Power	1800mW
------------	--------

SAFETY APPROVAL RATINGS


UL&CUL	NO:40A/14VDC
	NC:30A/14VDC

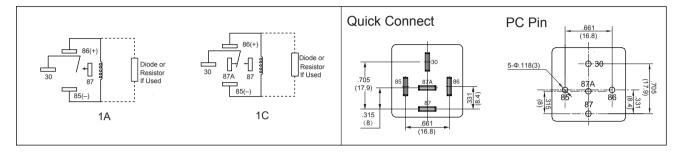
This datasheet is for customers' reference. All the specifications are subject to change without notice.


OUTLINE DIMENSIONS

Unit: inch(mm)

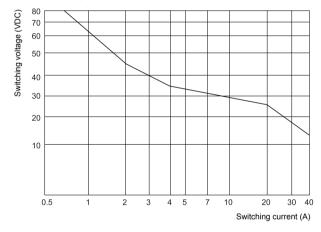
Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

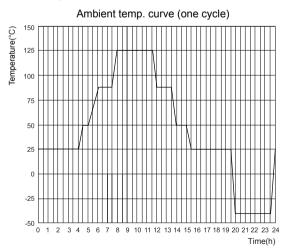


WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)


Wiring Diagram (Bottom view)

PCB Layout (Bottom view)



CHARACTERISTIC CURVES

1.Load limit curve(at 23°C)

- (1) This chart takes NO contact, resistive load as example.
- (2) The load and electrical endurance tests are made according to "CONTACT DATA" parameters' table. If actual load voltage, current, or operate frequency is different from "CONTACT DATA" table, please arrange corresponding tests for confirmation.
- 2. Ambient temperature curve of the electrical endurance test

- (1) The minimum temperature is -40°C.
- (2) The maximum temperature is 125°C.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

File No.:E75887

FEATURES

- · High contact rating 80A
- 1 Form A and 1 Form C arrangements
- · Quick connect and P.C.Board terminals
- Mounting Tab option

CONTACT RATINGS

Contact Arrangement	1A、1C
Contact Resistance	30mΩ (1A 24VDC)
Contact Material	AgSnO, AgNi, Silver Alloy
Contact Rating(Resistive)	NO:80A/14VDC NC:60A/14VDC
Max. Switching Voltage	75VDC
Max. Switching Current	80A
Max. Switching Power	1120W
Mechanical Life	1×10 ⁶ operations
Electrical Life	1×10⁵ operations

ORDERING INFORMATION

CAR T 1C P 80 DC12 - S - 680R - M - D - XXX
Model
T: Mounting Tab Nil=No Mounting Tab
1A=1 Form A 1C=1 Form C
P:PC PinNii:Quick Connect 80:80A
Coil Voltage
S:Sealed Nil:Covered
Resistor—
M:Metal tab Nil:Plastic tab
D:Diode —
Customer code —

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	500VAC 1min	
Strength	Between open contacts	500VAC 1min	
Operate time (at nomi. volt.)		≤7ms	
Release time (at nomi. volt.)		≤5ms	
Humidity		85% RH 40°C	
Ambient temperature		-40°C ~ +85°C	
Shock Resistance		294m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.27mm DA	
Unit weight		46g(CAR); 48g(CART)	
Construction		Sealed, Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

COIL DATA at 23°C

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
6	4.2	0.6	7.8	20
12	8.4	1.2	15.6	80
24	16.8	2.4	31.2	320

COIL

Coil Power	1800mW
------------	--------

SAFETY APPROVAL RATINGS

UL&CUL	NO:80A/14VDC NC:60A/14VDC	

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

3-.362(9.2)

1.118(28.4)

Unit: inch(mm)

.197(5)

.047(1.2)

Metal tab

email:info@hascorelays.com

Wiring Diagram **PCB** Layout **Outline Dimensions** (Bottom view) (Bottom view) Quick Connect **Quick Connect** 1.118(28.4) 1.035(26.3) max Diode or -.331 059(1.5) 1A 2-.031(0.8) 3-.047(1.2) 2-.248(6.3) 3-.374(9.5) PC Pin PC Pin 86(+ Diode or Resistor If Used 150(3.8) + 1.035(26.3) max 2-Ф.083(2.1) 1C

7.48(19) 8.66(22) 3.-047(1.2) 3.-047(1.2) 3.-374(9.5) 3.-374(9.5) 3.-374(9.5) 3.-374(9.5) 3.-374(9.5) 3.-374(9.5) 3.-374(9.5)

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ± 0.1 mm.

059(1.5)

Plastic tab

.15(3.8)

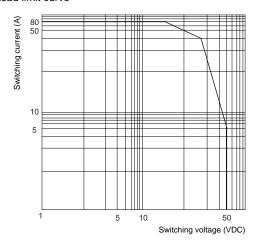
.079(2)

1.118(28.4)

2-.059(1.5)

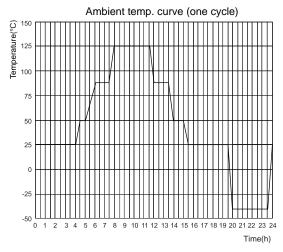
2-.248(6.3)

This datasheet is for customers' reference. All the specifications are subject to change without notice.


RELAYS

.738(18.75)

646(16.4)


CHARACTERISTIC CURVES

1. Load limit curve

- (1) The contact load is resistive.
- (2) The load and electrical endurance tests are made according to "CONTACT DATA" parameters' table. If actual load voltage, current, or operate frequency is different from "CONTACT DATA" table, please arrange corresponding tests for confirmation.
- (3) This chart takes 80A load as example.

2. Ambient temperature curve of the electrical endurance test

- (1) The minimum temperature is -40°C.
- (2) The maximum temperature is 125°C.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

File No.:E75887

FEATURES

- · Small size for high density mounting
- Up to 5000VAC Dielectric strength
- Fully Sealed

CONTACT RATINGS

Contact Arrangement	1A、1B、1C 2A	、2B、2C
Contact Resistance	50mΩ(at 1A 6VDC)	
Contact Material	AgSnO, Gold FLash, Silver Alloy	
Contact Rating(Resistive)	20A 277VAC 16A 240VAC 16A 24VDC	8A 240VAC 8A 24VDC
Max. Switching Voltage	440VAC/300VDC	
Max. Switching Current	12A/16A	8A
Max. Switching Power	3000VA/4000VA	2000VA
Mechanical Life	1×10 ⁷ operations	
Electrical Life	1×10⁵ operations	·

ORDERING INFORMATION

SPR F 1C 12 DC 12 K-XXX

at 23°C

Model-F:Class F Nil:Class B Contact arrangement:-1A=1 Form A;2A=2 Form A 1B=1 Form B;2B=2 Form B 1C=1 Form C;2C=2 Form C Contact Rating:1 Form 12A/16A, 2 Form 8A Coil:AC or DC -

Coil Voltage -

COIL DATA

Pole Distance:K=5mm R=3.5mm Customer Code

CHARACTERISTICS

esistance	1000MΩ (at 500VDC)	
Between coil & contacts	5000VAC 1min	
Between open contacts	1000VAC 1min	
Between contacts sets	2500VAC 1min	
e (at nomi. volt.)	10ms max.	
e (at nomi. volt.)	5ms max.	
	35% to 85% RH	
perature	Class B:-40°C to 85°C Class F:-40°C to 105°C	
Functional	98m/s ²	
Destructive	980m/s ²	
sistance	10Hz to 150Hz 10g/5g	
	Approx. 13.5g	
1	Sealed	
	Between coil & contacts Between open contacts Between contacts sets e (at nomi. volt.) e (at nomi. volt.) perature Functional Destructive iistance	

Notes:1) The data shown above are initial values. 2) Please find coil temperature curve in the characteristic curved below. AC

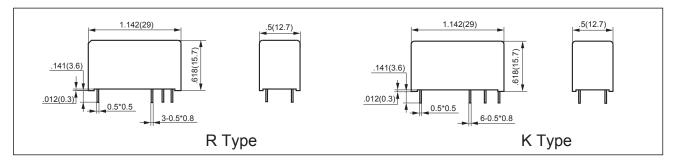
DC				
Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	3.5	0.5	6.5	62
6	4.2	0.6	7.8	90
12	8.4	1.2	15.6	360
24	16.8	2.4	31.2	1440
48	33.6	4.8	62.4	5760
60	42.0	6.0	78.0	7500
110	77.0	11.0	143.0	25200

Nominal Voltage VAC	Pick-up Voltage (Max.) VAC	Drop-out Voltage (Min.) VAC	Coil Current mA	Coil Resistance Ω
24	18.0	3.6	31.6	350(1±10%)
115	86.3	17.3	6.6	8100(1±15%)
230	172.5	34.5	3.2	32500(1±15%)

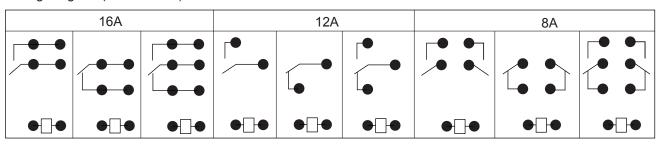
This datasheet is for customers' reference. All the specifications are subject to change without notice.

COIL

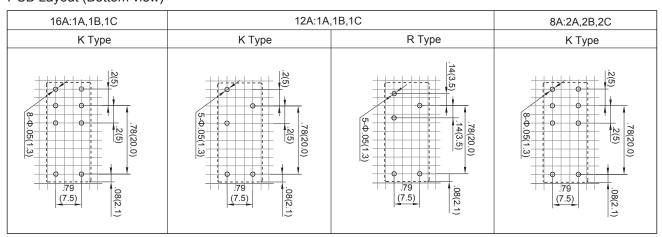
Coil Power DC:400mW (60V、110V:480mW) AC:Approx. 0.75VA


SAFETY APPROVAL RATINGS

UL&CUL 1A,1B,1C:20A 277VAC;16A 240VAC;16A 24VDC 2A,2B,2C:8A 240VAC; 8A 24VDC


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

Unit: inch(mm)

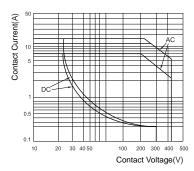

OUTLINE DIMENSIONS

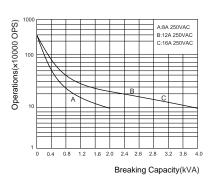
Wiring Diagram (Bottom view)

PCB Layout (Bottom view)

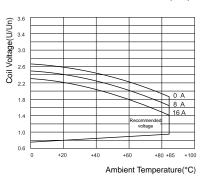
Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

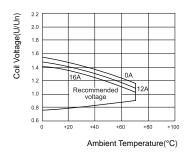
2) The tolerance without indicating for PCB layout is always ±0.1mm.


This datasheet is for customers' reference. All the specifications are subject to change without notice.


RELAYS

CHARACTERISTIC CURVES


MAXIMUM SWITCHING POWER


ENDURANCE CURVE

COIL OPERATING RANGE(DC)*

COIL OPERATING RANGE (AC)*

Notes:*The use of a relay with an energising voltage other than the rated coil voltage may lead to reduced electrical life.

An energising voltage over the abver range may damage the insulation of relay coil.

CONTACT RATINGS

Contact Arrangement	1A、1C	2A、2C	
Contact Resistance	50mΩ(1A 24VDC)		
Contact Material	AgSnO, Gold FLash, Silver Alloy		
Contact Rating(Resistive)		20A/277VAC 20A/30VDC	_
Max. Switching Voltage	277VAC/30VDC		
Max. Switching Current	10A	20A	10A
Max. Switching Power	2770VA/300W	5540VA/600W	2770VA/300W
Mechanical Life	1×10 ⁷ operations		
Electrical Life	1×10⁵ operations		

ORDERING INFORMATION

PR F 2C 10 DC12 K - XXX
Model
F:Class F Nil:Class B
Contact arrangement: ————————————————————————————————————
Contact Rating: 10=10A 20=20A
Coil Voltage —
Pole Distance:K=5mm R=3.5mm
Customer Code

CHARACTERISTICS

esistance	1000MΩ (at 500VDC)	
Between coil & contacts	5000VAC 1min	
Between open contacts	1000VAC 1min	
Between contact sets	3000VAC 1min	
e (at nomi. volt.)	≤15ms	
e (at nomi. volt.)	≤5ms	
	98% RH,40°C	
perature	-40°C ~ +85°C	
Functional	98m/s²	
Destructive	980m/s ²	
istance	10Hz ~ 55Hz 1.5mm DA	
	Approx. 18g	
l	Sealed	
	Between coil & contacts Between open contacts Between contact sets e (at nomi. volt.) e (at nomi. volt.) perature Functional Destructive iistance	

COIL DATA

at 23°C

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	4.0	0.5	6.0	47
6	4.8	0.6	7.2	68
9	7.2	0.9	10.8	155
12	9.6	1.2	14.4	275
24	19.2	2.4	28.8	1100
48	38.4	4.8	57.6	4400
110	80.0	11.0	120.0	14400

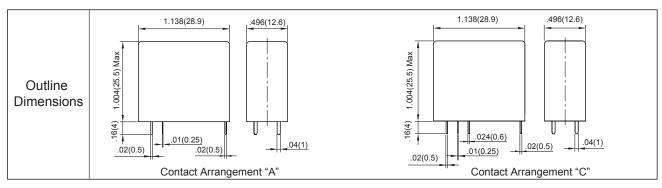
COIL

Coil Power	Approx. 530mW (110V:840mW)
------------	----------------------------

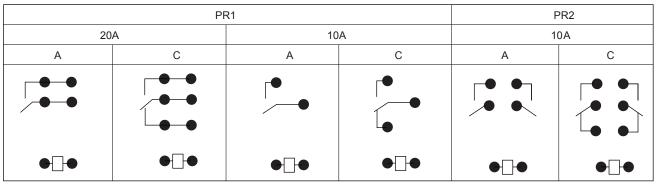
Notes: The data shown above are initial values

This datasheet is for customers' reference. All the specifications are subject to change without notice.

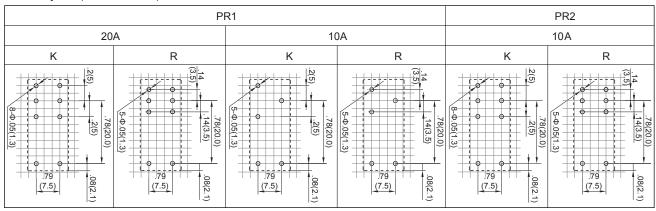
RELAYS


SAFETY APPROVAL RATINGS

UL&CUL	10A/277VAC/30VDC
	20A/277VAC/30VDC
	10A/250VAC 5A/30VDC


TüV	10A/250VAC
	10A/14VDC

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.


Unit: inch(mm)

Wiring Diagram (Bottom view)

PCB Layout (Bottom view)

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm; outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ± 0.1 mm.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

File No.:E75887

FEATURES

- 1 pole,2 pole and 4 pole contact arrangement is available
- · Many types of terminal style
- Transparent dust-proof cover, variety of installation methods
- · Multiple sockets available

CONTACT RATINGS

Contact Arrangement	1C, 2C	4C
Contact Resistance	100mΩ(1A 6VDC)	
Contact Material	AgSnO, Silver Alloy	
Contact Rating(Resistive)	15A/240VAC 15A/30VDC	10A/240VAC 10A/30VDC
Max. Switching Voltage	240VAC/30VDC	
Max. Switching Current	15A	10A
Max. Switching Power	3600VA/450W	2400VAC/300W
Mechanical Life	2×10 ⁷ operations	
Electrical Life	1×10⁵ operations	

CHARACTERISTICS

Insulation Resistance		100MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	1000VAC 1min	
Operate time	e (at nomi. volt.)	≤25ms	
Release time	e (at nomi. volt.)	≤25ms	
Humidity		98% RH, 40°C	
Ambient temperature		-40°C ~ +70°C	
Shock	Functional	98m/s²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1mm DA	
Unit weight		Approx. 37g	
Construction		Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

Model F:Class F Nii:Class B Number Poles:1,2,4 Contact Arrangement:C:SPDT Terminal Style: P=P.C.Board S=Quick Connect	T - XXX
Coil Input: AC or DC Coil Voltage	
L:LED N:NEON——————————————————————————————————	Customer

COIL DATA

at 23°C

DC

Nominal Voltage	Pick-up Voltage	Drop-out Voltage	Max. Allowable	Coil Resistance Ω±10%	
VDC	(Max.) VDC	(Min.) VDC	Voltage VDC	1C、2C	4C
5	4.0	0.5	5.5	27.5	16.6
6	4.8	0.6	6.6	40	24
12	9.6	1.2	13.2	160	96
24	19.2	2.4	26.4	630	360
48	38.4	4.8	52.8	2600	1540
110	88.0	11.0	121.0	11000	6800

AC

70					
Nominal Voltage	Pick-up Voltage	Drop-out Voltage	Max. Allowable	Coil Res	
VAC	(Max.) VAC	(Min.) VAC	Voltage VAC	1C、2C	4C
6	4.8	1.8	6.6	11.5	5
12	9.6	3.6	13.2	40	20
24	19.2	7.2	26.4	160	80
48	38.4	14.4	52.8	600	320
120	96.0	36.0	132.0	3900	2000
220	176.0	66.0	242.0	13000	6700

This datasheet is for customers' reference. All the specifications are subject to change without notice.

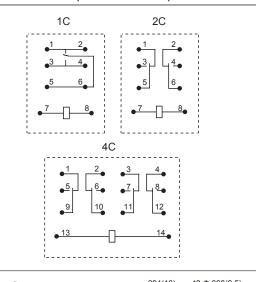
RELAYS

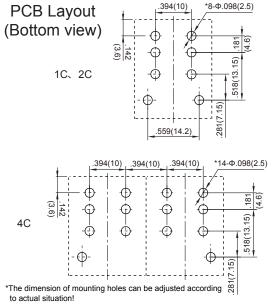
COIL

Coil Power	DC:900~1500mW
	AC:1.2~2.5VA

SAFETY APPROVAL RATINGS

UL&CUL	15A/240VAC
	1/2HP 277VAC; 1/3HP 120VAC
	10A/30VDC


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.


Unit: inch(mm)

Outline Dimensions

.846(21.5) 1.102(28) Max 1.634(41.5) Max. Max. Quick Connect .417(36) Max \bigcirc [0][0](0.5) 1 pole and 2 pole side 4 pole side .846(21.5) 1.102(28) Max. 1.634(41.5) Max. .417(36) Max PC Pin 1 pole and 2 pole side 4 pole side (0.5).846(21.5) Max. 1.693(43) Max 1.496(38) Max 346(21.5) May 1.102(28) Max FLANGE TOP 1 pole and 2 pole side 1.575±.004(40±0.1) \Box 1.102(28) Max. 1.634(41.5) Max

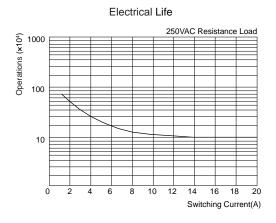
Wiring Diagram (Bottom view)

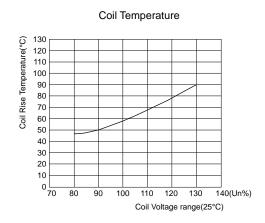
Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ± 0.1 mm.

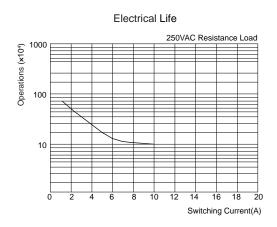
4 pole side

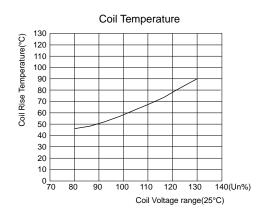
[0] [0]


This datasheet is for customers' reference. All the specifications are subject to change without notice.



RELAYS


CHARACTERISTIC CURVES


1C

2C、4C

File No.:E75887

FEATURES

- 2 pole,3 pole and 4 pole contact arrangement is available
- · Many types of terminal style
- Transparent dust-proof cover, variety of installation methods

CONTACT RATINGS

Contact Arrangement	2C, 3C	4C	
Contact Resistance	50mΩ(1A 24VDC)		
Contact Material	AgSnO, Silver Alloy		
Contact Rating(Resistive)	5A/250VAC	3A/250VAC	
	5A/30VDC	3A/30VDC	
Max. Switching Voltage	250VAC/30VDC		
Max. Switching Current	7A	5A	
Max. Switching Power	1750VA/210W	1250VA/150W	
Mechanical Life	2×10 ⁷ operations		
Electrical Life	1×10 ⁵ operations		

CHARACTERISTICS

Insulation Resistance		1000MΩ (at 500VDC)	
Dielectric	Between coil & contacts	1500VAC 1min	
Strength	Between open contacts	1000VAC 1min	
	Between contacts sets	1500VAC 1min	
Operate time	e (at nomi. volt.)	≤25ms	
Release time (at nomi. volt.)		≤20ms	
Humidity		35% ~ 95% RH	
Ambient temperature		-40°C ~ +85°C	
Shock	Functional	98m/s ²	
Resistance	Destructive	980m/s ²	
Vibration resistance		10Hz ~ 55Hz 1.5mm DA	
Unit weight		Approx. 37g	
Construction		Covered	

Notes:1) The data shown above are initial values.

2) Please find coil temperature curve in the characteristic curved below.

ORDERING INFORMATION

<u>UJJ 2 C P AC 220 L FT - </u>	XXX
Model	
Number Poles:2,3,4	
Contact Arrangement:C:SPDT	
Terminal Style:	
P=P.C.Board S=Quick Connect	
Coil Input: AC or DC	
Coil Voltage	
L:LED N:NEON————— Cus	tomer
FT:FLANGE TOP	Code

COIL DATA

at 23°C

DC

Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Max. Allowable Voltage VDC	Coil Resistance Ω±10%
5	4.0	0.5	5.5	27.5
6	4.8	0.6	6.6	40
12	9.6	1.2	13.2	160
24	19.2	2.4	26.4	650
48	38.4	4.8	52.8	2600
110	88.0	11.0	121.0	11000

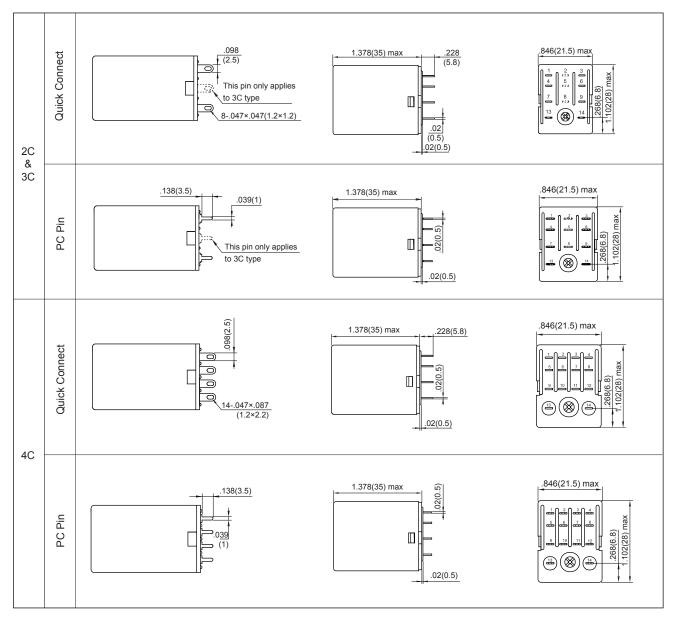
AC

,				
Nominal Voltage VAC	Pick-up Voltage (Max.) VAC	Drop-out Voltage (Min.) VAC	Max. Allowable Voltage VAC	Coil Resistance Ω±10%
6	4.8	1.8	6.6	11.5
12	9.6	3.6	13.2	46
24	19.2	7.2	26.4	184
48	38.4	14.4	52.8	735
120	96.0	36.0	132.0	4550
220/240	176.0	72.0	264.0	14400

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

COIL


Coil Power	DC:900mW~1100mW
	AC:1.2VA~1.8VA

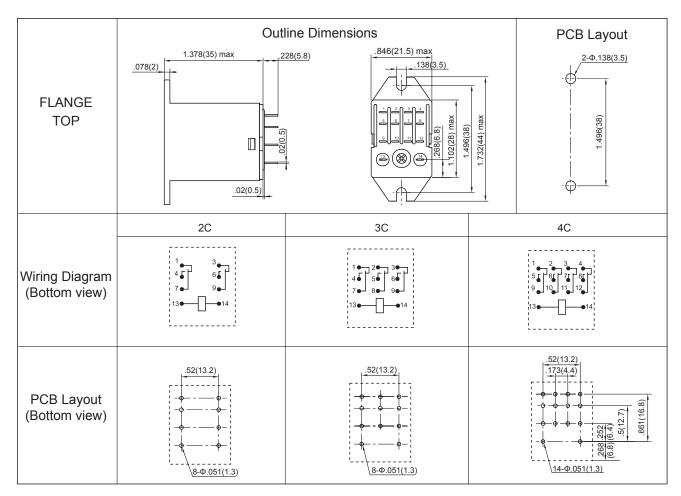
SAFETY APPROVAL RATINGS

UL&CUL	7A/250VAC/30VDC
	5A/250VAC/30VDC

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

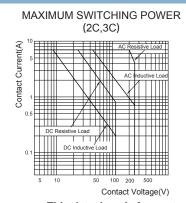
Unit: inch(mm)

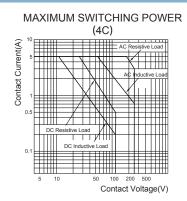
Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT.

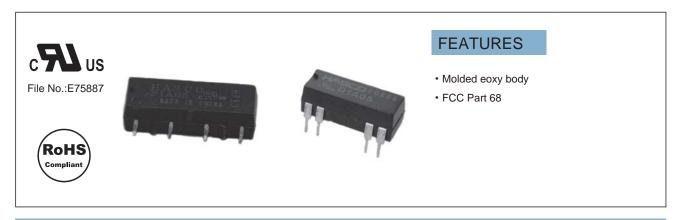

Unit: inch(mm)

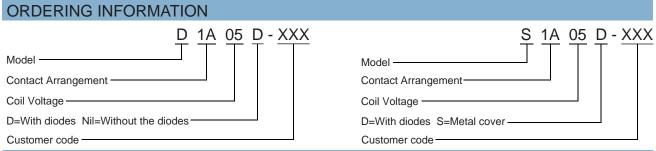


Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES




This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

 $TEL: (516)\ 328-9292 \quad FAX: (516)\ 326-9125 \quad www.hascorelays.com \\ \quad email: info@hascorelays.com$

COIL DATA

DIP Specifications

Contact Form	Part Number	Nominal Voltage (VDC)	Coil Resistanece ±10%	Must Operate (VDC)	Must Release (VDC)	Rated Current (mA)	Continuous Voltage (max)	Circuit Schematic
4.0	D1A05(D)	5	500	3.75	1.0	10	10	14 13 9 8
1A SPST-NO	D1A12(D)	12	1000	9.00	1.2	12	20	7000
3F31-NO	D1A24(D)	24	2150	18.00	2.4	11.1	28	1 2 6 7
	D1B05(D)	5	500	3.75	1.0	10	7	14 13 9 8
1B	D1B12(D)	12	1000	9.00	1.2	12	15	7000
SPST-NC	D1B24(D)	24	2150	18.00	2.4	11.1	28	1 2 6 7
	D2A05(D)	5	140	3.75	1.0	35.7	10	14 13 9 8
2A	D2A12(D)	12	500	9.00	1.2	24	20	7000
DPST-NO	D2A24(D)	24	2150	18.00	2.4	11.1	28	1 2 6 7
1C SPDT-CO	D1C05(D)	5	200	3.75	1.0	25	10	14 13 9 8
	D1C12(D)	12	500	9.00	1.2	24	20	7000
	D1C24(D)	24	2150	18.00	2.4	11.1	28	1 2 6 7

SIP Specifications

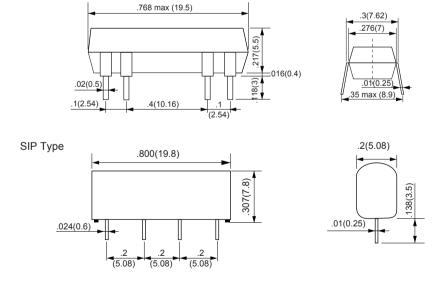
Contact Form	Part Number	Nominal Voltage (VDC)	Coil Resistanece ±10%	Must Operate (VDC)	Must Release (VDC)	Rated Current (mA)	Continuous Voltage (max)	Circuit Schematic
4.	S1A05(D)	5	500	3.75	1.0	10	10	
1A	S1A12(D)	12	1000	9.00	1.2	12	20	(-K1)
SPST-NO	S1A24(D)	24	2000	18.00	2.4	12	28	1 3 5 7

^{*}Form B SIP Available

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

64


CHARACTERISTICS

Item Contact Form	2A,1A,1B	1C	
Contact Resistance	100mΩ max. (Initial)	150mΩ max. (Initial)	
Operate Time(Max.)	0.5ms	1.0ms	
Bounce Time(Max.)	0.5ms	2.0ms	
Release Time(Max.)	0.2ms	0.2ms	
Insulation Resistance(Min.)	10¹¹Ω	10¹¹Ω	
Contact Material	Precious Metals	Precious Metals	
Power(Max.)	10VA	3VA	
Switching Voltage(Max.)	200VDC	100VDC	
Switching Current(Max.)	0.5A	0.25A	
Carry Current(Max.)	1.0A	0.5A	
Life Expectancy	10 ⁸ (Signal level)	5×10 ⁷ (Signal level)	
Breakdown Voltage	DC250V across open contact	DC200V across open contact	
	DC500V between coil and contact	DC500V between coil and contact	
Operating Temp	-40°C ~ +85°C	-40°C ~ +85°C	
Storage Temp	-50°C ~ +125°C	-50°C ~ +125°C	
Minimum Permissible Load	100mVDC 10μA	100mVDC 10µA	
Vibration	20g(10 ~ 2000Hz)	20g(10 ~ 2000Hz)	
Resonant Frequency	3.5 KHz	3.5 KHz	

OUTLINE DIMENSIONS

Unit: inch(mm)

DIP Type

Remark:1) In case of no tolerance shown in outline dimension: outline dimension \leq 1mm,tolerance should be \pm 0.2mm; outline dimension \geq 1mm and \leq 5mm,tolerance should be \pm 0.3mm;outline dimension \geq 5mm, tolerance should be \pm 0.4mm.

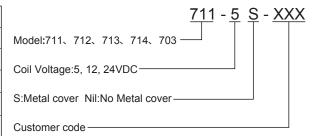
2) The tolerance without indicating for PCB layout is always ± 0.1 mm.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

700 SERIES

Reed Relays


FEATURES

- · Choice or normal, heavy duty or hi voltage
- FCC Part 68
- · Epoxy molded

CHARACTERISTICS

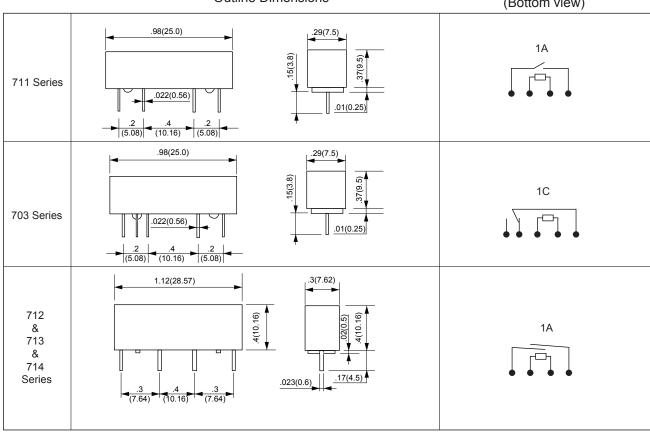
Operate time (at nomi. volt.)	≤0.5ms
Release time (at nomi. volt.)	≤0.2ms
Contact Resistance(Initial)	≤150mΩ
Life Expectancy	5×10 ⁷ operations 3×10 ⁶ operations(Rated Load)
Insulation Resistance	1000ΜΩ
Vibration	20G (10-2000Hz)
Thermal Shock	-55°C ~ +105°C
Moisture Resistance	60°C-90% 240 hours
Terminal Strength	225g
Operating Temperature	-40°C ~ +85°C
Storage Temperature	-55°C ~ +105°C

ORDERING INFORMATION

COIL DATA at 20°C

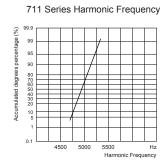
Part Number	Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Coil Resistance Ω±10%	Contact Rating(UL&CUL)	Breakdown Voltage	
711-5	5	3.75	0.5	500	AC 10VA, DC 10W max.	250VDC across contacts	
711-12	12	9.0	1.2	1000	100VDC max. 1.0A max.(carry)	2500VDC contact to coil	
711-24	24	18.0	2.4	2000	0.3A max.(switching)		
712-5	5	3.75	0.5	500	AC 70VA, DC 50W max. 150VAC, 200VDC	2001/DC	
712-12	12	9.0	1.2	1000	2.5A max.(carry)	300VDC across contacts 2500VDC contact to coil	
712-24	24	18.0	2.4	2000	1.0A max.(switching DC) 0.7A max.(switching AC)	2300 VDC Contact to con	
713-5	5	3.75	0.5	500	AC 50VA, DC 50W max.	600VDC corece contacts	
713-12	12	9.0	1.2	1000	300VAC, 350VDC 2.5A max.(carry)	600VDC across contacts 2500VDC contact to coil	
713-24	24	18.0	2.4	2000	0.5A max.(switching)	2500 V DC CONTACT TO CON	
714-5	5	3.75	0.5	500	100VA max.	4000\/DC	
714-12	12	9.0	1.2	1000	1.0A max.(switching) 2.5A max.(carry)	1000VDC across contacts 2500VDC contact to coil	
714-24	24	18.0	2.4	2000	350VDC/300VAC(max. switching)	2500 VDC CONTACT TO CON	
703-5	5	3.75	0.5	125	AC 3VA, DC 3W max. DC 30V	200VDC min.across contacts	
703-12	12	9.0	1.2	500	0.5A (carry) 0.2A (switching)	2500VDC contact to coil	

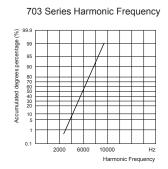
This datasheet is for customers' reference. All the specifications are subject to change without notice.



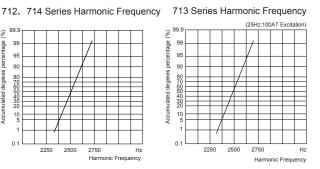
OUTLINE DIMENSIONS AND WIRING DIAGRAM.

Unit: inch(mm)

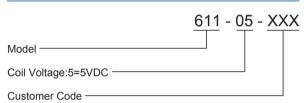

Wiring Diagram (Bottom view)




Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.


2) The tolerance without indicating for PCB layout is always ±0.1mm.

CHARACTERISTIC CURVES


FEATURES

- · Encapsulated Body
- Small size
- · Available with external shield

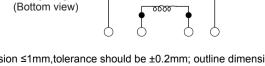
CONTACT RATINGS

Contact Arrangement	1A
Contact Resistance	100mΩ
Contact Material	Precious Metals
Max. Switching Voltage	DC200/AC100
Max. Switching Current	0.5A
Max. Switching Power	30VA
Mechanical Life	1×10 ⁸ operations
Electrical Life	1×10⁵ operations

ORDERING INFORMATION

COIL DATA

at 20°C


Nominal Voltage VDC	Pick-up Voltage (Max.) VDC	Drop-out Voltage (Min.) VDC	Rated Current mA	Contiguous Voltage (Max.) VDC	Coil Resistance Ω±10%
5	3.75	0.4	10	10	500

CHARACTERISTICS

Insulation Re	esistance	1000MΩ (500VDC)		
Dielectric	Between coil & contacts	DC500V 1min		
Strength	Between open contacts	DC250V 1min		
Operate time	e (at nomi. volt.)	≤0.4ms		
Release time	e (at nomi. volt.)	≤0.05ms		
Harmonic fre	equency	5900±400 Hz		
Max. driving	frequency	500 Hz		
Ambient tem	perature	-40°C ~ +85°C		
Unit weight		Approx. 4g		
Construction	1	Sealed		

Notes: The data shown above are initial values.

OUTLINE DIMENSIONS AND WIRING DIAGRAM Unit: inch(mm) Outline Dimensions

Remark:1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm,tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm,tolerance should be ±0.3mm;outline dimension >5mm, tolerance should be ±0.4mm.

2) The tolerance without indicating for PCB layout is always $\pm 0.1 \text{mm}$.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

HCH Reed Switches

11011110	ea Switches	5					
Specific CFI File No.:E	us	(1.115) REF. (105) MAX. (1024) DIA.REF. 28.32 (1050) MAX. (1050) MAX. (1050) MAX. (1050) MAX. (1050) NOM. 56.64	(1795) REF. (071) MAX. (017) DIA REF. (1800 (017) DIA REF. (1800) MAX. (10.18 (1.890) NOM. (1.890) NOM. (1.890) NOM.	(.530) MIN. (.500) MAX. (.180 (.185) DIA REF. (.180) MAX. (.180) M	(.715) MAX. (.025) DIA.REF. 2.84 (.025) DIA.REF. 2.83 (.230) MAX. (.230) NOM. 56.64	(.020) NOM. (.580) MAX, (.700) MIN. (.020) DIA.REF. (.022) NOM. (.580) MAX, (.700) MIN. (.020) DIA.REF. (.020) DIA.REF. (.020) DIA.REF. (.050) MAX (.050)	
		HCH25	HCH211	HCH219	HCH229	HCH551	
Electrical	l Ratings						
Contact Fo		А	A	А	А	С	
Contact Ra	ting Watt-max.	20	10	10	50	5	
Voltage [V]	Switching Vdc-max.	200	200	200	265Vac rms (250Vdc)	175	
Voltage [V]	Breakdown Vdc-min.	250	250	250	750	200	
Current [A]	Switching A-max.	1.0	0.5	0.5	1.0	0.25	
	Carry A-max.	1.2	1.0	0.8	2.5	1.5	
Resistance	Contact,Initial Ω-max.	0.100	0.120	0.100	0.100	0.100	
[Ω]	Insulation Ω-min.	1010	10 ¹²	1012	1010	10 ⁶	
Capacitance	e Contact pF-typ	0.4	0.2	0.3	0.2	1.0	
Temperature		-40 ~ +125	-40 ~ +125	-40 ~ +125	-20 ~ +125	-40 ~ +125	
	Storage °C	-65 ~ +125	-65 ~ +125	-65 ~ +125	-65 ~ +125	-65 ~ +125	
OPERAT	ING CHARAC	TERISTICS					
Operating 7	Γime ms-max.	0.7	0.5	0.6	0.75	0.7	
Release Tir	ne ms-max.	0.2	0.1	0.2	0.3	1.0	
Shock 11ms	1/2 Sine Wave G-max.	100	100	100	100	50	
Vibration 50)-2000 Hertz G-max.	30	30	30	30	30	
Resonant F	requency Hz-typ	6250	8500	9500	2100	11000	
MAGNETIC CHARACTERISTICS							
Pull-in Ran	ge Ampere Tums	17-38	10-25	10-25	22-43	15-30	
		Miniature CD	Sub-Miniature	Sub-Miniature	Miniature HV	Miniature Changeover	

HCH Reed Switches

1101111001	a Switches						
Specifications CFU US File No.:E75887		(7115) REF. (-112) MAX. (-025) DIA.REF. (-712) MAX. (-112) MAX. (-712) MAX. (-713) MIN. (-775) MAX. (-7230) M	(.105) MAX. (.022) DIA.REF. 28.37 (.685) MIN. (.775) MAX. (.022) DIA.REF. 2.66 (.022) MIN. (.775) MAX. (.022) MAX.	(-786) REF. (-100) MAX. (0.04) DIA.REF. (-160) MAX. (0.04) DIA.REF. (-160) MAX. (0.04) DIA.REF. (-160) MAX. (-160)	(196) REF. (100) MAX. (1024) DIA.REF. 25.4 (100) MAX. (1024) DIA.REF. (1480) MIN. (600) MAX. (1580) MAX. (1580) MAX. (1580) MAX. (1580) MAX.	(-882) MIN (-851) MAX (-080) DIA REF. (-080) MIN (-047 FE) (-080) MIN (-041) MAX (-080) MIN (-041) MAX (-080) MIN (-041) MAX (-080) MIN (-041) MAX (-080)	(1.15) REF. (1.12) MAX. (025) DIA.REF. 28.32 (7.15) MIN. (.760) MAX. (1.230) NOM. (2.230) NOM. 56.64
		HCH2210	HCH2210V	HCH2212	HCH9215	HCH9216	HCH50WD
Electrical R	atings	110112210	1101122101	TIOTIZZIZ	110110210	110110210	TIOTIOOVID
Contact Form	attings	A	^	^			Α.
		Α	Α	A	Α	Α	Α
Contact Rating		50 200	10 200	200	10 200	10 200	50 200
Voltage [V]	Switching Vdc-max.						140
	Breakdown Vdc-min.	300	2000	250	250	250	300(400)
Current [A]	Switching A-max.	1.5	0.5	1.0	0.5	0.5	1.0,0.7
	Carry A-max.	3.0	1.3	1.0	1.2	1.2	3.0,2.1
Resistance [Ω]	Contact,Initial Ω-max.	0.100	0.100	0.100	0.100	0.100	0.100
	Insulation Ω-min.	1010	1012	1012	1010	1010	1010
Capacitance C		0.2	0.2	0.4	0.2	0.2	0.2
Temperature	Operating °C	-40 ~ +125	-75 ~ +125	-40 ~ +125	-40 ~ +125	-40 ~ +125	-40 ~ +125
[°C]	Storage °C	-65 ~ +125	-75 ~ +125	-65 ~ +125	-65 ~ +125	-65 ~ +125	-65 ~ +125
OPERATIN	G CHARACTERISTIC	S	<u> </u>				I
Operating Tim	e ms-max.	0.75	0.75	0.6	0.6	0.6	
Release Time	Release Time ms-max.		0.3	0.2	0.2	0.2	
Shock 11ms	1/2 Sine Wave G-max.	100	100	100	100	100	
Vibration 50-2000 Hertz G-max.		30	30	30	30	30	
Resonant Fred	quency Hz-typ	2100	3200	6250	3900	5200	
MAGNETIC CHARACTERISTICS							
Pull-in Range	Ampere Tums	22-43	17-38	17-38	12-38	10-30	
		Miniature Power	Miniature HV	Sub-Miniature	Sub-Miniature	Sub-Miniature	

This datasheet is for customers' reference. All the specifications are subject to change without notice.

70

Specifications

c	US No.:E75887		Ф.077 МАХ. (Ф0.3) (Ф0.3) (Ф1.8) ((92) 4) (92) 400 4) (92) (92) (92) (92) (93) (93) (93) (93) (93) (93) (93) (93	(90.5) (90.5) (90.5) (90.5) (90.5) (90.5) (90.5) (90.5) (90.5) (90.5) (90.5) (17.4) (17.0) (1	φ.019 (Φ0.5) - (551 MAX. 1.740b.012 (44.2±0.3)	(0.019) (0.019
			ORD213	ORD211	ORD9216	ORD228	ORD9215
Electrical	Contact		1A	1A	1A	1A	1A
Characteristics	Pull-in Available in ±5 AT ran	iges	10 ~ 40	10 ~ 40	10 ~ 50	10 ~ 50	10 ~ 50
	Drop-out	[AT] min.	5	5	5	5	4
	Contact resistance(Initial)	[mΩ] max.	200	100	100	100	150
	Breakdown voltage	[DCV] min.	150	150	200	200	200
	Insulation resistance	$[\Omega]$ min.	10 ⁹	10 ⁹	109	10 ⁹	10 ⁹
	Electrostatic capacitance	[pF] max.	0.4	0.2	0.3	0.3	0.3
	Contact rating	[VA,W]	1.0	1.0	10	10	10
	Maximum switching voltage	[V]	AC24 / DC24	AC24 / DC24	AC110 / DC100	AC110 / DC100	AC110 / DC100
	Maximum switching current	[A]	DC 0.1	DC 0.1	DC 0.5	DC 0.4	0.3
	Maximum carry current	[A]	0.3	0.3	1.0	1.0	1.0
Operating	Operating time	[ms] max.	0.3	0.3	0.3	0.3	0.4
Characteristics	Bounce time	[ms] max.	0.3	0.3	0.3	0.3	0.4
	Release time	[ms] max.	0.05	0.05	0.05	0.05	0.05
	Resonant frequency	[Hz]	1100 ± 500	7500 ± 500	5000 ± 400	5300 ± 300	3700 ± 300
	Maximum operating frequence	cy [Hz]	500	500	500	500	500
Standard coil	Coil resistance	[Ω]	600	600	450	450	450
	No. of turns	[T]	5000	5000	5000	5000	5000
	Dimensions	[mm]	Ф3.3 × 10	Ф3.3 × 10	Ф3.7 × 15	Ф3.7 × 15	Ф3.7 × 15
	Type No.		8	8	6	6	6

*Magnets also available. Available Cut and Bent as Well as on Reed

Notes:

Features

(Contact material)

1.Pull-in & drop-out were measured by using OKI standard coil.*This value of drop-out is prescribed when pull-in is over 20AT. When pull-in is less than 20AT, drop-out are 5 MIN & RLS/OP > 0.7, Tolerance at measurement is ±2AT. (Fig.1)

 $2. \\ Measurements \ are \ made \ by \ the \ four-terminal$ voltage reduction method where the 100AT excitation is given to the switch using the OKI standard coil to close the contacts, and 10mA current is applied. 3. This value varies depending on the pull-in value (contact gap). In this measurement, the pull-in value is about 20AT.(MIL-STD-202D METHOD 301) 4.Measurement is made by using a DC 100V super megger.(MIL-STD-202D METHOD 302) 5. The value shows the time required for the contacts

to cause the first contact bounce after applying the voltage to the OKI standard test coil. The times is shown at top in Fig.2

6. Bouncing is caused when the contact close. Bounce time means the time when opening and closing of the contacts are being repeated before the contacts are completely closed. Shown by T bounce.

Ultra-miniature

(RH)

7. Release time means the time from the morment the voltage applied to the test coil as removed to the moment the contacts open. Shown by Tris.

8. Resonant frequency is a vibrating frequency inherent to the reed switch. Avoid application of vibration at this frequency to the switch, otherwise it will cause misoperation.

9. The reed switch can be operated with a frequency higher than the maximum operating frequency. However, operation with such a frequency will often cause an endless chattering at the time of ON operation. It is recommended for the designer to take the maximum operationg frequency into consideration when designing systems and circuits.

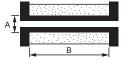
10.Dimensions of standard coil.

A:Inner diameter of standard coil.

Ultra-miniature

(RH)

Detector End of winding (bottom) Coil saturation current voltage between contacts 2 to 10VDC 100AT Coil _current between contacts waveform (≤10 mA) Contact waveform Pull-in value Drop-out value Current at time of operation × Number of turns in standard coil(500AT);Indicated in AT

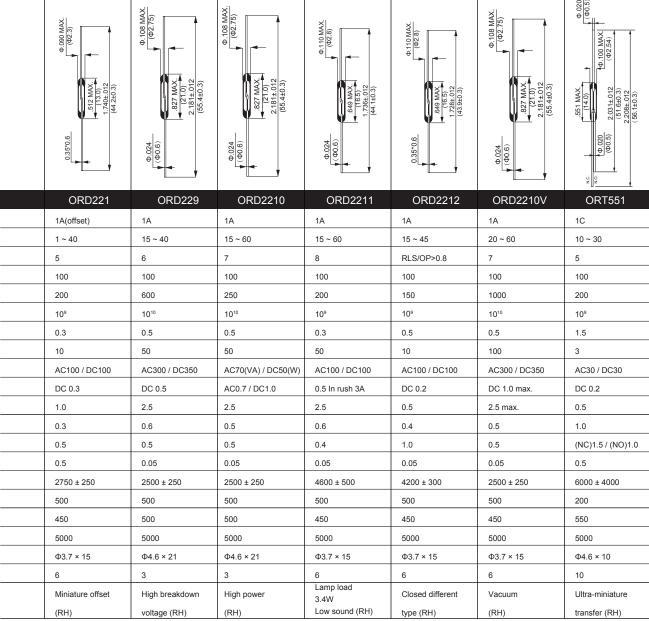

General purpose

miniature(RH)

General purpose

miniature(RH)

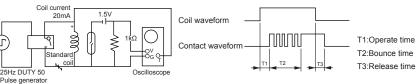
Beginning of winding (top)


B:Length of standard coil. This datasheet is for customers' reference. All the specifications are subject to change without notice.

General purpose

miniature(RH)

Fig.1



11.If a shock of more than 30G is applied to a reed switch, the pull-in value of the switch will be often caused to change from the standard specification. Therefore, it is recommended not to use the reed switch which has been given such a shock.

12.If a vibration of more than 1 kHz is applied to a reed switch, even a very small acceleration to it will easily cause the switch to misoperate to close due to its resonant frequency.

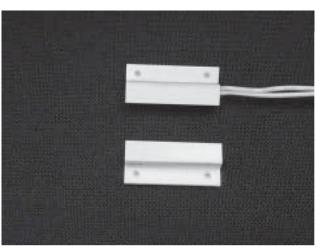
13.In practice the reed switch can operate beyond the specified range. In case of magnet driving, however, some magnets show decrease of magnetic flux even at the lowest temperature of the range depending on their temperature characteristics. There fore, it is recommended to consider the range as a general guide line.

Fig.2

14.The actual tensile strength is more than 5 kg (breakdown). However, considering the lead not to get out of position, the value for the static load is shown here. Environmental Characteristics Table 2


	Characteristics(Common to All Types)	Test Conditions	Notes
Shock	Shall not misoperate with shock of 30G(11ms) applied	MIL-STD-202E METHOD 213B	13
Vibration	Shall not misoperate with max. 20G(10-55Hz)	MIL-STD-202E METHOD 210A	14
Temperature range	Shall be operational in the range of -40~125°C	MIL-STD-202E METHOD 107D	15
Lead tensile strength	Shall withstand against 2Kg static load	MIL-STD-202E METHOD 211A	16

This datasheet is for customers' reference. All the specifications are subject to change without notice.


Our reed switches are available in multiple styles and housing types in either SMT or through hole designs. We can custom bend and produce any reed configuration either bare or in a housing. Simply send us your specs for us to quote.

Please note: HASCO can produce and/or stuff any PC board with a reed switch or relay in house at our state of the art production facility.

RELAYS TERMINOLOGY

CONTACT

(1) Contact arrangement

Denotes the contact switching combinations available on a relay and are defined in terms of number of poles, number of throws (single or double), normal position (open or close), and the sequence to make and break.

Fundamental contact arrangements are give in Table 1.

(2) Contact type

The one structure of contact forming the contact parts, Single contact and Bifurcated contact are offered.

(3) Contact material

The contacts are fastened to the movable leaf spring and stationary terminal to ensure electrical contact. Usually they are made of materials that mainly consist of silver because of its high electrical and thermal conductivity. For small-current loads, the gold-plated or the gold-overlay silver contacts are generally used.

(4) Contacting

The typical power, voltage or current, which a relay can turn on and off under specified conditions of load, ambient temperature and humidity. Usually, the contact rating refers to resistive load.

(5) Max. switching power

The upper limit of power which can be switched by the contacts. This value will be lower than the product of the maximum voltage and the maximum current. Care should be taken not to be exceed this value.

COIL

(1) Nominal voltage

A single value of voltage intended to be applied to the coill.

(2) Nominal Power

The value of power used by the coil at nominal voltage. For DC coils, expressed in Watte

Nominal power= $\frac{V^2}{R}$ V: Nominal voltage

R: Coil Resistance (at 20°C)

(3) Coil resistance

* SINCE 1976 *

The resistance of the coil for temperature conditions listed in the catalog. (Usually at 20°C/68°F)

(4) Pick-up (Set) voltage

When the coil voltage is increased gradually from 0V, the relay will operate at a certain voltage. This voltage is called the Pick-up voltage. The Pick-up voltage in the catalog shows the maximum value. In case of latching relay, the Pick-up voltage is called the Set Voltage.

(6) Max. switching voltage

The maximum open circuit voltage which can safely be switched by the contacts.AC and DC voltage maximums will differ in most cases.

(7) Max. switching current

The maximum current which can safely be switched by the contacts. AC and DC current maximums may differ.

(8) Min. switching current

The minimum value of current that can be reliably switched by the contacts.

(9) Contact resistace

The electrical resistance of closed contacts measured at their associated terminals.

Table 1 Fundamental contact arrangement

Form	Description Symbol Performance		Performance
А	Make (NO)	<u> </u>	The combination in which the contacts are open in normal or unoperated position.
В	Break (NC)		The combination in which the contacts are closed in the unoperated position.
С	Transfer (BBM)		The combination in which Form B (NC) contact open before Form A(NO) contacts close.
D	Continuous (BBM)	1	The combination in which Form A (NO) contact close before Form B (NC) contacts open.

Note:

 Abbreviations used to define the nature of the contacts are as follows:

NO:Nomally open M:Make BBM:Break before Make NC:Nomally closed B:Break MBB:Make before Break

- 2. Double switching combinations are called 2 Form A (2A) or 2 Form C (2C)
- 3. The following abbreviations are used occasionally.

SP: Single pole ST: Single throw DP: Double pole DT: Double throw

EX.:

SPST NO:1 Make (1 Form A or 1a) SPST NC:1 Break (1 Form B or 1b) SPDT:1 Transfer (1 Form C or 1c) DPDT:2 Transfer (2 Form C or 2c) 4PDT:4 Transfer (4 Form C or 4c)

(5) Drop-out (Reset) voltage

When the coil voltage on an operate relay is decreased gradually, the relay will release at a certain voltage. This voltage is called the Drop-out voltage. The Drop-out voltage is called the Reset voltage, when the reverse voltage is increased on the coil of operate relay, the voltage which the relay will release.

(6) Operating power

The value of power used by the coil at Pic-k-up voltage.

(7) Max. continuous voltage

The maximum value of voltage that can be applied continuously to the coil without causing damage.

(8) Operating function

• Single side stable type: Relay which turns on when the coil is energized and turns off when de-energized.

1 Coil latching type:

Relay with a latching construction that can maintain the on or off state with a pulse input. With one coil, the relay is set or reset by applying signals of opposite polarities.

• 2 Coil latching type:

Relay with a latching construction composed of 2 coils, set coil and reset coil

The relay is set or reset by alternately applying pulse signals of the same polarity.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

MAIN POINTS TO SELECT SUITABLE RELAY

A relay may meet with a variety of ambient conditions during actual usage. In order to avoid unexpected failure in result, testing over practical range under actual operating condition is required. For proper use of relays, the characteristics of the selected rel-

ay should be well known, and the conditions of relay use has to be investigated to determine whether they are matched to the environmental conditions, In addition, the coil conditions, contact conditions, and the ambient conditions for the

relay that is actually used must be sufficiently known in determining the relay specififcations. The table below shows a summary of points of consideration for relay selection. It may be used as a reference for investigation of items and points of caution.

Table 2. Main Ponts to Select Relays

Item	Specification Points	Consideration Points	
	Contact arrangement	Contact forms, number of poles, Contact sequence	
Contact	Contact load	Level of load,AC or DC, resistive or indicative or capacitive, counter voltage of inductive load	
	Contact material	Contact material should be matched to the level of load	
	Life	Number of operations, Frequency in switching	
	Coil voltage	Nominal voltage, power source ripple	
Coil	Pick-up and Drop-out voltage	Fluctuation in supply voltage, Rise in Pick-up and Drop-out voltage due to the coil resistance rise	
Con	Coil resistance	Power consumption of coil temperature rise according to the coil temperature rise	
	Temperature rise	Ambient temperature and coil temperature rise according to the applied voltage.	
	Dielectric strength	Do specifications of the relays match that required in the equipment?	
Insulation	Surge withstand voltage		
	Insulation resistance		
	Ambient temperature and humidity	Range of ambient temperature and humidity in the use location.	
Environment	Vibration and shock	Level of vibration and shock in the use location.	
	Ambient atmophere	No presence of gas which may cause contact failure.	
	Mounting method	The method of flux coating, soldering, washing and mounting?	
Others	Cover	Material of cover (compatibility with washing solution)	
Ouicio	Relay construction	Sealed or non-sealed type relays.	
	Special condition	Are there any special conditions?	

CONTACT

(1) Contact load

The phenomena in the contacts of relays greatly vary depending on contact load level such as kind of load and current level as well as contact material and size, opening speed and contact bounce.

*Switching current

AC current is alternately reduced to zero but DC current is not, so the arc discharge current at breaking of load current is hard to be extinguished for DC current.

Therefore the duration of the arc discharge is longer in DC circuit than AC circuit and the maximum DC switching current is smaller than AC load.

*Resistive load

Resistive load is a standard load in life tests and the contact ratings in catalogue are usually specified with resistive load. In resistive load circuit, it is assumed that there is no inrush or counter breaking current on switching of loads.

*Inductive load

Inductive loads such as electromagnetic relay, solenoids and motors easily generate a high counter voltage between their coils and cause arc discharge across the relay contacts.

Because the level of inductive load is affected by the load current and the power factor (coso), the life is decreased when the power factor is lowered.

In circuit with load such as motor, solenoid, transformer and others, an inrush current of several times larger than the steady current is generated at the time of connecting the load.

It is necessary to select the contact that has a sufficient capacity for the condition

*Capacitive load

In a capacitive load circui, an inrush current of 20 to 40 times large than the steady state current is produced. A surge suppressor should be used to prevent contact welding.

(2) Contact material

Relay contacts must be made from material that allows contact resistance to be low and stable, that is not quickly worn by the arc, and that has a high fusing point. At present there is no material that meets these conditions, and it appears unlikely that one will be found in the near future.

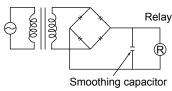
(3) Low level circuit

Circuits with several volts and several mA or less are called low-level circuits. At low levels, silver contacts form an oxide or sulfide film on their surface under certain conditions, which makes contact resistance unstable. If the circuit impedance is high, although the high contact resistance itself does not cause problems, the noise is easily produced. To maintain stability of contact resistance in a sulfurating atmosphere, contact of gold overlayed on silver-palladium are effective.

Table 3. Typical load and Inrush Current

Kind of Load	Inrush current	
Resistive load	Steady state current	
Solenoid load	10-20 times of the steady state current	
Motor load	5-10 times of the steady state current	
Incandescent lamp load	10-15 times of the steady state current	
Mercury lamp load	Approx.3 times of the steady state current	
Condenser load	20-40 times of the steady state current	
Transformer load	5-15 times of the steady state current	
Contactor load	3-10 times of the steady state current	

This datasheet is for customers' reference. All the specifications are subject to change without notice.


COIL

(1) Coil voltage of DC relay

For the operation of DC relays, standards exist for power source voltage, with DC voltage standard set at DC5,6,9,12,24 and 48. Because of the gradual increase or decrease of the current impressed on the coil causing possible delay in movement of the contacts, there is a possibility that the specified contact capacity may not be satisfied.

So, consideration should be given to the method of applying voltage on the coil.

(2) Power source fluctuation

PERFORMANCE

(1) Contact resistance

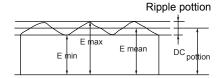
(a) Contact wipe

The contact resistance of clean surface is extremely low, such as several $m\Omega$. In practice, some kind of film is formed on to almost all of the contact surfaces and the contact resistance varies depending on the properties of that film.

To clean such film and stabilize contact resistance, distance of the contact wipe is increased.

When contacts open and close, the contacted surfaces slid together, thus effecting a breakage of nonconductive film formed on the contact surfaces.

(b) Contamination of contact surface
The Possible causes of contamination that effects increases in contact resistance
are as follows.

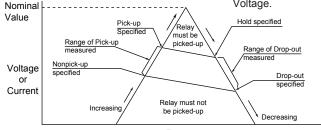

- *Adherence of fiber, scale and particles of plastic mold, etc.
- *Adherence of silicone oxides.
- *Adherence and deposits of non-conducting material produced through a chemical reaction with the gas absorbed onto the contact face.
- *Adherence and deposits of carbon powders produced at contact surface
- *Oxidation and sulfuration of metallic powders on the contact surface.
- (c) A bifurcated contact is contaminated The bifurcated spring is cut deeply enough and separated so as to provide a good independence in a contact even when some insulating particle is trapped between

As a power source for DC relays, a battery or either a half or full wave rectifier circuit with smoothing capacitor is used.

The characteristics with regard to the excitation voltage of the relay will change depending on the type of power source, and thus, in order to display stable characteristics, the most desirable method is perfect DC.

In the case of ripple included in the DC power source, if the smoothing capacitor is too small, humming develops and unsatisfactory condition is produced, due to the influence of the ripple.

Fig.4 Ripple factor of rectifier circuit



contact on one side.

In this case, the contact of the other side can serve to maintain a good contact, with the sufficient mechanical independence between the two members. So, the bifurcated contacts have successfully reduced contact failures. (d) Sealed relay

Sealed relays are available. This feature excludes the ingress of organic gases and dust in atmosphere and allows immersion cleaning. When a sealed type relays switches the load in the presence of organic gases inside relay, it produces carbon powders on the contacts which create rise of contact resistance and acceleration of contact resistance and acceleration of contact consumption. In order to avoid such problems, the constituent components are annealed for physical and chemical stability. This annealing process drives off residual volatiles in the plastics, insuring a contaminant free environment inside the sealed relay, resulting in more stable contact resistance over life.

Fig.5 Relationship of Relay Performance

This ripple is calculated using the formula described in Fig.4 and it is necessary to give consideration to use of a power source with less than a 5% ripple.

(3) Coil resistance

The resistance of coil is specified according to the nominal voltage of the relay. Generally, the nominal value of coil resistance is that at $20^{\circ}\text{C}(68^{\circ}\text{F})$ and the allowable range is limited to within $\pm 10\%$. The resistance/temperature relationship for copper wire is about 4% for 1°C , and with this ratio, the coil resistance increases.

Ripple factor=
$$\frac{\text{E max. - E min.}}{\text{E mean}} \times 100(\%)$$

E max.=Maximum value of ripple portion
E min.=Minimum value of ripple

E mean=Average value of ripple portion

(2) Coil

*Nominal Coil Voltage (Rated Coil voltage)

A single value voltage intended by design to be applied to the coil or input.

*Pick-up Voltage (Pull-in Voltage or Must Operate Voltage)

When the voltage on an unoperated relay is increased, the value at or below which all contacts must function (transferred). The pick-up voltage is generally assigned to 70% of nominal coil voltage so that the relay can function without failure owing to fluctuation of voltage supplied, ambient temperature raise and irregularity of coil resistance.

*Drop-out Voltag (Release or Must Release Voltage)

When the voltage on an operated relay is decreased, the value at or above which all contacts must revert to their unoperated position. The drop-out voltage is generally assigned to 10% of nominal coil voltage. Figure 5 shows the relationship between Pick-up Voltage and Drop-out Voltage.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

* SINCE 1976 *

PERFORMANCE

(3) Coil temperature rise

When voltage is applied to a coil, its temperature increases due to juele heat. Coil temperature rise can be calculated from the temperature coefficient of the copper wire by measuring the coil resistance.

The coil temperature rise can be obtained by the next expression.

$$T=T2-Ta=\frac{R2-RI}{RI}(K+TI)+T1-Ta$$

where, T: Coil temperature rise (°C)

TI: Initial ambient temperature (°C)

T2: Coil temperature after the test (°C)

Ta: Ambient temperature after the test (°C)

RI: Coil resistance at T1 °C (Ω)

R2: Coil resistance at T2 °C (Ω)

K: Constance (=235 for copper wire)

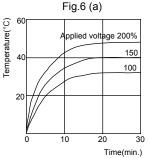
however, I T1 - Ta 1 ≤ 5 (°C)

(4) Hot coil and Cool coil

The coil temperature with no voltage applied on the coil is usually to be equal to the ambient temperalure. When voltage is applied to the coil, the coil temperature rises,increasing both coil resistance and pick-up voltage. The coil with it's temperature rise due to voltage impression is called a Hot Coil. To the contrary, when no voltage is impressed on coil, the coil, temperature of which is equal to ambient temperature, is called a Cool Coil.

In general, the values for characteristics such as pick-up voltage, drop-out voltage and so on are measured at the ambient temperature of 20°C 68°F, Cool Coil conditions. For the Hot Coil, because of it's pick-up voltage rise, these is a possibility that hat it may not operate under the same conditions as Cool Coil.Thus,care is required.

(5) Operating range


(a) Maximum continuous voltage

The maximum voltage that can be applied continuously to the coil without causing damage. When a voltage greater than the maximum continuous voltage is applied to the coil (layers may short) the coil may burn out, due to the temperature rise. Do not exceed the usable operating range shown in the Fig. 7.

AMBIENT ENVIRONMENT

(1) Silicone compound atmosphere Silicone compounds such as silicone rubber, silicone paint, silicone grease, etc. emit volatile silicone gas. Note that when silicone is used near relays, switching contacts in the presence of its gas causes silicon to adhere to the contacts and may result in contact failure. In this case, use a substitute

Coil temperature rise

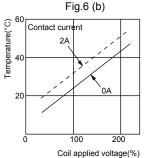


Figure 6 (a) shows the duration characteristics. Figure 6 (b) shows the voltage characteristics in a steady state at constant supply voltage.

(b) Pick-up voltage

As the ambient temperature rises, the coil resistance increases, pick-up voltage. Figure 7, line B refers to the relationship. The upper portion of line-B in Fig.7 shows the range of voltage which can be applied to the coil. Line-A is maximum continuous voltage. Thus the relay operating range is the portion surrounded by line A and B. In order to have stable operation of relay, the APP voltage and the ambient temperature should be in the operating range. If the ambient temperature increases, pick-up voltages rises, while maximum continuous voltage decrease. Care is required.

(6) Operate time and Release time There is variation in Operate time and Release Time depending upon voltage/power applied to coil.

Figure 8 shows an example of relationship between Operate Time and Release Time. Figure 8 refers to the phenomenon that according to the fluctuation of coil impressed voltage, Operate Time greatly varies, while Release Time is small. To the extent of large coil imressed voltage, the Operate Time is rapid, but if it is too rapid, the make contact bounce time may be extended.

(7) Safety standards

Laws and regulations demand securing the safety of users from dangers such as electric shock and fire lying around household appliances and other consumer electric equipment or devices.

that is not silicone based. If the use of silicone compound is inevitable, use a plasticsealed relay.

(2) Influence of external magnetic field When transformers, speakers or magnets are located near a relay the characteristics may change and faulty operations may result due to the strong magnetic field gene-

Major industrial countries across the world already have their own safety standards such as those under control of 'The Electrical Appliance and Material Control Law' in Japan, UL in U.S.A.,CSA in Canada, VDE in Germany, SEMKO in North Europe and BS in GB.

Fig.7 Operating range

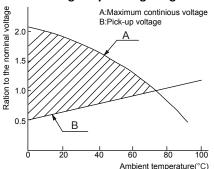
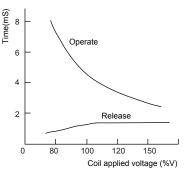



Fig.8 Operate and Release time

rated from the equipment.

The influence depends on the strength of the magnetic field and it should be checked at the installation. In such a case suitable measures such as magnetic shielding or selection of adequate in arrangement of relay should be taken so as to avoid problems.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

* SINCE 1976 *

MOUNTING OF RELAYS

(1) Mounting direction

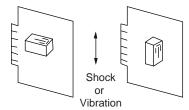
Mounting direction is important for optimum relay characteristics.

(2) Shock and vibration resistance It is ideal to mount the relay so that the movement of contacts and armature is perpendicular to the direction of vibration or shock, as shown in Fig. 10.

(3) Contact reliability

It is recommended to mount the relays so that the surfaces of its contacts are vertica-I and in Lipper location of relay inside. Such mounting methods prevent dirt and dust as well as scattered contact material (produced due to large loads from which arcs are

generated) and powdered metal from adhering to them. Furthermore, it is not desirable to switch both a large load and a low level load with a single relay.


The scattered contact material produced when switching the low level load and may cause contact failure. Therefore, avoid mounting the relay with its low level load contacts located below the large load con-

(4) Adjacent mounting

When many relays are mounted close together, abnormally high temperature may result from the combined heat generated. Mount relays with sufficient spacing betw-

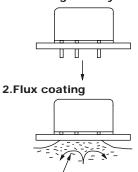
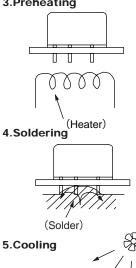

een them to prevent heat buildup, This a-Iso applies when a large number of bords mounted with relays are installed as in a card rack. Be sure the ambient temperature of the relays does not exceed the value listed in the catalog.

Fig.10 Direction of relays


RELAY SOLDERING AND WASHING GUIDELINES

1.Mounting of relay

(Foamed flux)

3. Preheating

Guidelines

- *Avoid bending and terminals to make the relay self-clinching.
- Relay performance cannot be guaranteed if the terminals are bent.
- *Adjust the position of the PC board so that flux does not overflow onto the top of it.
- *Use rosin-based flux, which is non-corrosive and requires no washing.
- *Do not use Automatic Flux Coating Method to dust-cover type relays.
- *Do not overflow onto the top of PC Board, in such a case, the flux may even penetrate a flux-resistant type relay.
- *Be sure to preheat before soldering.
- *Preheating acts to improve solderability.
- *Preheat according to the following conditions.

Temperature	100°C 212°F or less
Time	Within approx.1 minute

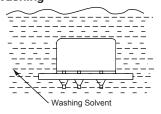
^{*}Note that long exposure to high temperatures (e.g. due to a malfunctioning unit) may affect relay characteristics.

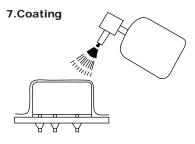
Automatic Soldering

- *Flow solder is the optimum method for soldering.
- *Adjust the level of solder so that it does not overflow onto the top of the PC board.
- *Unless otherwise specified, solder under the following conditions depending on the type of relay.

Solder Temperature	Approx.250°C 482°F
Soldering Time	Within approx.5 seconds
Solder Ration	Sn/Pb=60/40 or 63/37

Hand Soldering *Keep the tip of the soldering iron clean.


	, 1100p 1110 tip 01 1110 00140
Solder Iron	30W or 60W
Iron Tip Temperature	Approx.300°C 572°C
Solder Time	Within approx 3 seconds


- *Immediate air cooling is recommended to prevent deterioration of the relay and surrounding parts due to soldering heat.
- *Although the sealed type relay can be cleaned, avoid immersing the relay into cold liquid (such as washing solvent) immediately after soldering. Doing so may deteriorate the sealing performance.

RELAY SOLDERING AND WASHING GUIDELINES

6.Washing

Guidelines

- * Do not wash flux-resistant type relays and dust cover type relays by immersion.
- * Careless washing may cause washing solvent to penetrate the relay.
- * Plastic sealed type relays can be washed by immersion. Use washing solvents shown in Table 6.
- * Use of other washing solvent may damage the relay case and cover, and also cause washing solvent to penetrate the relay.

Table 6. Washing solvent compatibility chart for sealed relays Washing solvent

Washing solvent			
Chlorinated	Chlorothene VG,N Trichloroethylene Perchloroethylene Methylene chloride		
Alcohol	Ethanol IPA		
Aqueous	Hollis 310 Indusco 624,1000 Lonco Terg		

- * Avoil ultrasonic washing on relays. Use of ultrasonic cleaning may cause breaks. In the coil or slight sticking of contacts due to the ultrasonic energy.
- * If the PC board is to be coated to prevent the insulation of the PC board from deteriorating due to corrosive gases and high temperature, note the following.
- ** Do not coat dust-cover type relays and flux-resistant type relays.
- ** Depending on the type, some coating materials may have an adverse affect on relays, select coating materials carefully.

RELAY TERMINOLOGY:PERFORMANCE

(1) Operate (Set) time

Time from initial energization to the first opening of closed contact or first closing of open contact. This time does not include any bounce time. In case of latching relays, this is called "Set time".(cf. Fig.1)

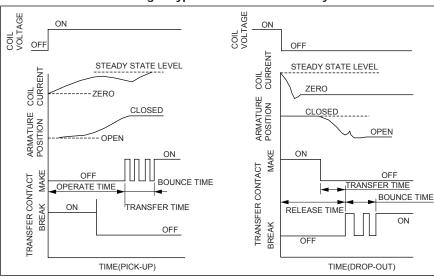
(2) Release (Reset) time

Time from initial de-energization of the relay coil to first opening of closed contact or first closing of open contact. This time does not include any bounce time. In case of latching relays, this is called "Reset time".

This means the time from initial reverse energization of the coil to first opening of closed contact or first closing of open contact.(cf. Fig.1)

(3) Bounce time

Internally caused intermittent and undesired opening of closed contact or closing of open contacts of a relay.(cf. Fig.1)

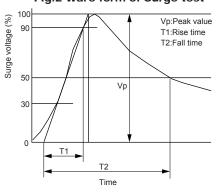

(4) Dielectric strength

The maximum. allowable AC(RMS) voltage (50/60Hz) which may be applied between two specified test points, usually for 1 minute in duration. In general, the maximum leak current is 1 mA.

(5) Surge withstand voltage

The maximum allowable peak surge voltage which may be applied between two specified test points.

Fig.1 Typical time traces of relay



Usually, wave form of this test is specified indicating peak value, rise time and fall time.(cf. Fig.2) In FCC Part 66, T1=10 μ S, Vp 1500V are specified.

(6) Insulation resistance

The resistance between all mutually insulated conducting sections of the relay. This value changes depending on the ambient temperature and humidity.

Fig.2 Ware form of Surge test

This datasheet is for customers' reference. All the specifications are subject to change without notice.

RELAYS

RELAY TERMINOLOGY:PERFORMANCE

(7) Capacitance

The electrostatic capacitance between mutually insulated conducting sections of the relay. Usually this value is measured at 1 kHz.

(8) Life

· Mechanical life

The minimum number of operations which the relay can be operated under nominal conditions with no load on the contacts.

· Electrical life

The minimum number of operations which the relay can be operated under nominal conditions with specified load on the contacts.

(9) Vibration resistance

The resistance to the vibration applicable to the relay. expressed as a displacement and frequency range.

Functional

The vibration which can be applied to the relay during service without causing the openings of the closed contacts for more than the specified time.

Destructive

The vibration which can be allowed by the relay during shipping, installation, without damages and changes in its operating characteristics.

(10) Shock resistance

The resistance to the shock applicable to the relay, expressed as an acceleration in G.

Functional

The shock can be applied to the relay during service without causing the openings of the closed contacts for more than the specified time.

Destructive

The shock which can be allowed by the relay during shipping, installation, without damage and changes in its operating characteristics.

(11) Temperature range

The range of ambient temperature in which the relay can be used without damages in its characteristics or functions.

(12) Safely standard

Standard for the prevention of electric shock hazards and fire accidents differs in content from country to country.

UL(U.S.A.) VDE(Germay) BS(G.B.) SEMKO(Sweden) CSA(Canada)

(13) Structure of relays

Relays are classified in 4 types as Fig. 3 by the structure of terminals, cover and case, and mounting method of the relay.

Fig. 3 Structure of relays (Y:Yes N:No)

Item	Dust cover Type	Flux Free Type	Sealed Type	Surface Mount Type
Structure	Cover	Cover Sealant Base	Cover Sealant Base	Cover Sealant Base
Characteristics	Most basic construction and there is gap between cover and base, and between base and terminals.	Terminals are sealed with base by sealant. The joint level between cover and base is higher than the PC board surface.	All the gaps between case and base, base and terminals are sealed by sealant.	All the gaps between case and base, base and terminals are sealed by sealant. Terminals are formed in "L" shape intended to be soldered by reflow soldering.
Mounting Method	Insertion mounting	Insertion mounting	Insertion mounting	Surface mounting
Automatic Flux Coating	N	Υ	Υ	Y
Automatic Soldering	N	Υ	Y	Υ
Automatic Washing	N	N	Y(Note 1)	Y(Note 1)
Manual Soldering	N	Υ	Υ	-
Environmental Gas Resistance	N	N	Y(Note 2)	Y(Note 2)

Note1:It is needed to select suitable washing solvent.

Note2:In explosive gas environment, use the metallic hermetic seal types.

This datasheet is for customers' reference. All the specifications are subject to change without notice.

