

UL File No.: E43028
 CSA File No.: LR26550

\author{

- High Vibration/Shock Resistance
 Vibration resistance: 18 G, amplitude 3 mm (10 to 55 Hz)
 Shock resistance: 40 G (11 ms)
 - Latching types available
 - High Sensitivity in Small Size
 150 mW pick-up, 300 mW nominal operating power
 - Wide Switching Range
 From 1 mA to $15 \mathrm{~A}(2 \mathrm{C})$ and $10 \mathrm{~A}(4 \mathrm{C})$
}

SPECIFICATIONS

Contacts				
Arrangement				2 Form C, 4 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)				$30 \mathrm{~m} \Omega$
Initial contact pressure				2C: Approx. $0.392 \mathrm{~N}(40 \mathrm{~g} 1.41 \mathrm{oz})$ 4C: Approx. $0.196 \mathrm{~N}(20 \mathrm{~g} 0.71 \mathrm{oz})$
Contact material				Stationary contact: Gold plated silver alloy
				Movable contact: Silver alloy
Rating (resistive load)	Nominal switching capacity			$\begin{gathered} \text { 2C: } 15 \text { A } 250 \text { V AC } \\ 10 \text { A } 30 \text { V DC } \\ \text { 4C: } 10 \text { A } 250 \text { V AC } \\ 10 \text { A } 30 \text { V DC } \end{gathered}$
	Max. switching power			$\begin{aligned} & \text { 2C: } 3,750 \text { VA, } 300 \mathrm{~W} \\ & \text { 4C: } 2,500 \text { VA, } 300 \mathrm{~W} \end{aligned}$
	Max. switching voltage			2C, 4C: $250 \mathrm{~V} \mathrm{AC}$,30 V DC
	Max. switching current			2C: 15 A (AC) 10 A (DC), 4C: 10 A
	UL/CSA rating			$\begin{aligned} & \text { 2C: } 15 \mathrm{~A}, 1 / 2 \mathrm{HP} \\ & \text { 125, } 250 \mathrm{~V} \text { AC, } 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \\ & 4 \mathrm{C}: 10 \mathrm{~A}, 1 / 3 \mathrm{HP} \\ & 125,250 \mathrm{~V} \text { AC, } 10 \mathrm{~A} 30 \mathrm{~V} D C \end{aligned}$
Expected life (min. operations)	Mechanical (at 180 cpm)			5×10^{7}
	Electrical (at 20 cpm) (resistive load)		15 A 250 V AC	10^{5}
			10 A 30 V DC	10^{5}
			10 A 250 V AC	10^{5}
			10 A 30 V DC	10^{5}

Remarks

${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
*3 Excluding contact bounce time
${ }^{* 4}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms

Coil (polarized) at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$

Single side stable	Minimum operating power	150 mW
	Nominal operating power	300 mW
Latching	Minimum set and reset power	150 mW
	Nominal set and reset power	300 mW

Characteristics (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F} 50 \%$ Relative humidity)			
Max. operating speed (at rated load)			20 cpm
Initial insulation resistance*1			$1,000 \mathrm{M} \Omega$ at 500 V DC
Initial breakdown voltage*2	Between open contacts		1,500 Vrms
	Between contact sets		3,000 Vrms
	Between contact and coil		3,000 Vrms
Surge resistance between coil and contact			Approx. 6,000 V
Operate time*3 (at nominal voltage)			Max. $30 \mathrm{~ms} \mathrm{(Approx}$.25 ms)
Release time(without diode)*3 (at nominal voltage)			Max. 20 ms (Approx. 15 ms)
Temperature rise (at nominal voltage)			Max. $40^{\circ} \mathrm{C}$ with nominal coil voltage and at nominal switching capacity
Shock resistance ${ }^{\text {F }}$ F		Functiona**	Min. $392 \mathrm{~m} / \mathrm{s}^{2}$ \{40 G\}
		Destructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}
Vibration resistance		Functiona**	$176.4 \mathrm{~m} / \mathrm{s}^{2}\{18 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3 mm
		Destructive	$176.4 \mathrm{~m} / \mathrm{s}^{2}\{18 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -50^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -58^{\circ} \mathrm{F} \text { to }+140^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			2C: 50 g 1.76 oz; 4C: 65 g 2.29 oz

${ }^{* 6}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 49)

TYPICAL APPLICATIONS ORDERING INFORMATION

NC machines, remote control panels, sophisticated business equipment.

(Notes) 1. PC board terminal types available as option. Please consult us for details.
2. Standard packing; Carton: 20 pcs.; Case: 200 pcs.

TYPES AND COIL DATA at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Single side stable

Part No.		Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating current, mA	$\begin{gathered} \text { Coil } \\ \text { resistance, } \\ \Omega(\pm 10 \%) 20^{\circ} \mathrm{C} \end{gathered}$	Inductance, H (at 120 Hz)	Nominal operating power, mW	Maximum allowable voltage, V DC $\left(40^{\circ} \mathrm{C}\right)$
2 Form C	4 Form C								
SP2-DC3V	SP4-DC3V	3	2.1	0.3	100.0	30	Approx. 0.05	300	4.5
SP2-DC5V	SP4-DC5V	5	3.5	0.5	60.2	83	0.1	300	7.5
SP2-DC6V	SP4-DC6V	6	4.2	0.6	50.0	120	0.2	300	9
SP2-DC12V	SP4-DC12V	12	8.4	1.2	25.0	480	0.7	300	18
SP2-DC24V	SP4-DC24V	24	16.8	2.4	12.5	1,920	3.0	300	36
SP2-DC48V	SP4-DC48V	48	33.6	4.8	6.2	7,700	11.2	300	72

2-coil latching

Part No.		Nominal voltage, V DC	Set andresetvoltage,V DC (max.)	Nominal operating current, mA	Coil resistance, $\Omega(\pm 10 \%)$		Inductance, H (at 120 Hz)		Nominal operating power, mW	Maximum allowable voltage, V DC $\left(40^{\circ} \mathrm{C}\right)$
2 Form C	4 Form C				Coil I	Coil II	Coil I	Coil II		
SP2-L2-DC3V	SP4-L2-DC3V	3	2.1	100.0	30	30	Approx. 0.03	Approx. 0.03	300	4.5
SP2-L2-DC5V	SP4-L2-DC5V	5	3.5	60.2	83	83	0.07	0.07	300	7.5
SP2-L2-DC6V	SP4-L2-DC6V	6	4.2	50.0	120	120	0.1	0.1	300	9
SP2-L2-DC12V	SP4-L2-DC12V	12	8.4	25.0	480	480	0.4	0.4	300	18
SP2-L2-DC24V	SP4-L2-DC24V	24	16.8	12.5	1,920	1,920	1.4	1.4	300	36
SP2-L2-DC48V	SP4-L2-DC48V	48	33.6	6.2	7,680	7,680	5.6	5.6	300	72

DIMENSIONS
mm inch
2 Form C

Plug-in terminal

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)
Single side stable

(Deenergized condition)
2 coil latching

(Reset condition)
Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

4 Form C

Plug-in terminal

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view) Single side stable

(Deenergized condition)
2 coil latching
$\begin{array}{r}11 \\ \hline \quad 12 \quad 13 \\ \hline\end{array}$

(Reset condition)
Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

REFERENCE DATA

Operate and release time (Single side stable) SP2

Sample: SP4-DC24V
Ambient temperature: 27 to $29^{\circ} \mathrm{C} 81$ to $84^{\circ} \mathrm{F}$

Coil temperature rise
Sample: SP2-DC24V
Ambient temperture: 20 to $22^{\circ} \mathrm{C} 68$ to $72^{\circ} \mathrm{F}$

Electrical life (SP2, 15 A 250 V AC resistive load)

Electrical life (SP4, 10 A 250 V AC resistive load)

ACCESSORIES

Soldering socket

Wrapping socket

SP2-WS

Mounting hole drilling diagram

Performance profile

Item	SP2, socket with solder	SP4, socket with solder	SP2, wrapping socket	SP4, wrapping socket		
Withstand voltage	AC $3,000 \mathrm{~V}, 1 \mathrm{~min} .$, between each terminal					
Insulation resistance	$1,000 \mathrm{M} \Omega$ min					
Ambient working temperature	-50 to $+60^{\circ} \mathrm{C}-58$ to $+140^{\circ} \mathrm{F}$					
Maximum current, ON current	15 A	10 A	12 A	10 A		Note: Do not remove the relay while it is ON.
:---						

Notes:
(1) Mounting screws and the fastening bracket are included in the package.
(2) Mount the relay with the proper mounting direction - i.e. with the direction of the NAIS mark on top of the
relay case matching the direction of the NAIS mark on the terminal block. (The g direction of the terminal block is the upward direction of the relay.)

Mounting and removal of fastening bracket

1. Mounting

Insert the A part of the fastening bracket into the mounting groove of the socket, and then fit the B part into groove, while pressing with the tip of a minus screwdriver.
2. Removal

Slide the B part of the fastening bracket
from the groove in the socket, while pressing with the tip of a minus screwdriver. While the bracket is in this position, keep pressing the C part of the bracket to the relay side with your finger, and lift up to the left side and remove from the groove, as in the diagram at right.

Screw terminal socket

Mounting hole drilling diagram

Notes:
(1) Mounting screws and the fastening bracket are included in the package.
(2) Mount the relay with the proper mounting direction - i.e. with the direction of the NAIS mark on top of the relay case matching the direction of the NAIS mark on the terminal block. (The g direction of the terminal block is the upward direction of the relay.)

Fastening bracket mounting and removal

1. Mounting

Insert the A part of the fastening bracket into the mounting groove of the terminal block, and then fit the B part into groove, while pressing with the tip of a minus screwdriver.
2. Removal

Slide the B part of the fastening bracket from the groove in the terminal block, while pressing with the tip of a minus screwdriver. While the bracket is in this position, keep pressing the C part of the from the groove, as in the diagram at bracket to the relay side with your finger, and lift up to the left side and remove
right.

Mounting plate

The SP-Relay with SP-MA attached

Tolerance: $\pm 0.1 \pm .004$

Direct chassis mounting possible, and applicable to DIN rail.
[DIN 46277 (35 mm width) is applicable.]

Use method

1. Both the SP relay 2 c and 4 c can be mounted to the mounting slats.
2. Use the mounting slats either by attaching them directly to the chassis, or by mounting with a DIN rail.
(A) When attaching directly to chassis Use two M3 screws.
For the mounting pitch, refer to the specification diagram.
(B) When mounting on a DIN rail

Use a 35 mm wide DIN rail (DIN46277).
The mounting method should be as indicated in the diagram at right.

Method for mounting on DIN rail

Press relay in
Fig. 2

(1) First fit the arc shaped claw of the mounting slat into the DIN rail.
(2) Press on the side as shown in the diagram below.
(3) Fit in the claw part on the opposite side.

Precautions for use

When mounting to a DIN rail, use a commercially available fastening bracket if there is a need to stop sliding of the mounting slat in the rail direction.

